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1 INTRODUCTION

Humans have a remarkable ability to both generalize known actions to novel objects, and reason
about novel objects once their relationship to known objects is understood. For example, on being
told a novel object (e.g. ’bees’) is to be avoided, we readily apply our prior experience avoid-
ing known objects without needing to experience a sting. Deep Reinforcement Learning (RL) has
achieved many remarkable successes in recent years including results with Atari (Mnih et al., 2015)
games and Go (Silver et al., 2018) that have matched or exceeded human performance. While a
human playing Atari games can, with a few sentences of natural language instruction, quickly reach
a decent level of performance, modern end-to-end deep reinforcement learning methods still require
millions of frames of experience (for e.g. see Fig. 3 in (Lake et al., 2016)). Past studies have hy-
pothesized a role for prior knowledge in addressing this gap between human performance and Deep
RL (Dubey et al., 2018; Lake et al., 2016). However, scalable approaches for combining prior or
instructional knowledge with deep reinforcement learning have remained elusive.

While other works have studied the problem of generalizing tasks involving the same objects (and
relations) to novel environments, goals, or dynamics (Finn et al., 2017; Nichol et al., 2018; Packer
et al., 2018; Rusu et al., 2016; Wang et al., 2018; Zambaldi, 2019), here we specifically study the
problem of generalizing known relationships to novel objects. Zero-shot transfer of such relations
could provide a powerful mechanism for learning to solve novel tasks. We speculated that objects
might be an intermediate representation to combine the visual scene with prior knowledge about ob-
jects and their relations (Devin et al., 2017; Janner et al., 2019; Wang et al., 2018). Prior information
or instruction can take the form of a knowledge graph (Ammanabrolu & Riedl, 2018; Beetz et al.,
2015; Lenat et al., 1986; Saxena et al., 2014) in the form of 〈subject, relation, object〉 triplets.

In this paper, we present a new model, Graph-DQN, which combines information from knowledge
graphs and visual scenes, allowing the agent to learn, reason, and apply agent-object and object-
object relations. Graph-DQN was more sample efficient by 5-10x compared to the baseline DQN
algorithm (Mnih et al., 2015) on a Warehouse game and a symbolic version of Pacman. When
tested on unseen objects in the warehouse game, Graph-DQN generalizes whereas the baseline fails.
We observed agents’ behavior while removing edges during runtime (i.e., using a trained Graph-
DQN), which confirmed that those edges were grounded to the game semantics. These results
demonstrate that Graph-DQN can provide a foundation for faster learning and generalization in
deep reinforcement learning by leveraging prior information in the form of structured relations.

2 GRAPH-DQN

In deep learning based RL agents such as Deep Q-Networks (DQN), the input state is typically a
2-D feature map representing the game world as either RGB pixels, or as a symbolic environment.
In this paper, we design Graph-DQNs for symbolic grid worlds. Our model combines a provided
prior knowledge graph with the symbolic environment, and leverages graph convolutions to reason
over entities in both the knowledge graph and the game state.

∗Use footnote for providing further information about author (webpage, alternative address)—not for ac-
knowledging funding agencies. Funding acknowledgements go at the end of the submission.
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2.1 KNOWLEDGE GRAPH

The knowledge graph K = (V, E) is a directed graph provided as vertices for each symbol in
the environment (for subjects and objects), V = {v1, v2, v3, v4, . . .} initially encoded as one-hot
vectors of length |V|, and edge features E = {e12, e13, e23, . . .}. The edge features (for relations)
are represented as one-hot vectors. The connectivity of the graph, as well as the edge features
are designed to reflect the structure of the environment. During training, the knowledge graph’s
structure and features are fixed. Importantly, while we provide the one-hot encoded representation
of the edge relationships, the Graph-DQN must learn to ground the meaning of this representation
in terms of rewarding actions during training. If successfully grounded, the Graph-DQN may use
this representation during the test phase when it encounters novel objects connected with known
relationships to entities in the knowledge graph.

2.2 GRAPH CONVOLUTION

In order to compute features for the entities in the knowledge graph, we use an edge-conditioned
graph convolution (ECC) (Simonovsky & Komodakis, 2017). In this formulation, a multilayer per-
ceptron network is used to generate the filters given the edge features as input. Each graph layer g
computes the feature of each vertex vi as:

vi =
∑

vj∈N (vi)

Θ[eij ]vj + b (1)

where the weight function Θ[eij ] depends only on the edge feature and is parameterized as a neural
network. N (vi) is the set of nodes with edges into vi. Our implementation uses graph convolution
layers with d = 64 features, and the weight network is a single linear layer with 8 hidden units. The
output of g is a graph with vertices V ∈ R|V|×d

2.3 MODEL COMPONENTS

We introduce several operations for transferring information between the state representation S and
the knowledge graph K. We can Broadcast the knowledge graph features into the state, or use
Pooling to gather the state features into the knowledge graph nodes. We can also update the state
representation by jointly convolving over (S,K), which we call KG-Conv. The supplement has
further details of these operations.

3 EXPERIMENTS

Previous environments measured generalization to more difficult levels (Cobbe et al., 2018; Nichol
et al., 2018), modified environment dynamics (Packer et al., 2018), or different solution paths (Zam-
baldi, 2019). These environments, however, do not introduce new objects at test time. To quantify
the generalization ability of Graph-DQN to unseen objects, we needed a symbolic game with the
ability to increment the difficulty in terms of the number of new objects and relationships. Therefore,
we introduce a new Warehouse environment, where the agent pushed balls into the corresponding
bucket, and new ball and bucket objects and their pairing are provided at test time. We also bench-
marked our model and the baseline DQN algorithm on a symbolic version of Pacman1 in order to
compare their sample efficiency in a more difficult environment.

3.1 WAREHOUSE

The warehouse environment is implemented using the pycolab environment (Stepleton, 2017). The
environment consists of a 10 × 10 grid, where the agent is rewarded for pushing balls into their
matching buckets. The set of rewarded ball-bucket pairs varies, and in the test games the agent sees
balls or buckets not seen during training. For the variations, see Table 1. Lower case alphanumeric
characters refer to balls, and upper case to buckets. We increase the difficulty of the environment

1http://ai.berkeley.edu/project_overview.html
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Table 1: Experiment variations for the Warehouse environment. The agent is rewarded for pushing
the ball into the correct bucket. For each type, we list the rewarded ball-bucket pairs in the training
and test games. Note that the test games only include ball types not seen in the training games. Sets
denote rewarded combinations. For example, {b, c} → B means b→ B and c→ B are rewarded.

Name Training Pairs Test Pairs
one-one b→ B c→ B
two-one {b, c} → B d→ B
five-two {b, c, d, e, f} → B {g, h} → B
buckets b → B, c → C ,

d → D , e → E ,
f → F

g → G , h → H
, i → I , j → J ,
k → K

buckets-
repeat

{b, c, d} → B ,
{e, f, g} → C, . . . ,
{n, o, p} → F

{q, r, s} → G,
{t, u, v} → H ,
. . . , {6, 7, 8} → K

by changing the number of ball-bucket pairs, the complexity of the grouping, and the number of
unseen objects. The buckets-repeat is a challenging environment, with complex relationships in the
test environment. The agent is identified as the A symbol, and the walls with +. For each variation,
we generated 100 training mazes, and 20 testing mazes, randomly varying the location of the agent,
ball(s), and bucket(s) in each maze. The agent received a reward of 3.0 for a successful pairing, and
a penalty of −0.1 for each time step taken.

3.2 SYMBOLIC PACMAN

We test the agents on the smallGrid, mediumGrid, mediumClassic, and capsuleClassic environments
from the text-based Pacman implementation. The environments differed in the size of the map as
well as the numbers of ghosts, coins, and capsules present. We used random ghosts (as opposed to
ghosts seeking out the agent). The agent received +10 points for eating a coin, +200 for eating a
ghost, +500 for finishing the coins, -500 for being eaten, and -1 for each move.

3.3 KNOWLEDGE GRAPH CONSTRUCTION

For both environments, we add all entities to the knowledge graph with the exception of blank
spaces. We then add edges between objects to reflect relationships present in the game structure.
Each entity or edge type is assigned a unique one-hot vector; two pairs of entities may be connected
by the same edge type. The Warehouse games have edges similar to those shown in Supplemental
Figure 3, with an edge feature of ‘1’ from the agent to all balls to encode a ’pushes’ relationship;
edge feature of ‘2’ between all rewarded ball-bucket pairs; and an edge feature of ‘0’ between the
agent and impassable objects: the bucket(s) and the wall symbol. While we attach semantic meaning
to these edge categories, their utility is grounded by the model during training. In Pacman, we add
an ’impassable’ relation from all the agents (player, ghost, and scared ghost) to the wall. We also add
distinct edges from the player to all edible entities and agents (coin, capsule, scared ghost, ghost).

4 RESULTS

We compared Graph-DQN to a baseline DQN in the Warehouse and Pacman environments. We also
explore the effect of modifying the knowledge graph during training and at test time.

4.1 WAREHOUSE

In the Warehouse environment, the Graph-DQN model was more sample efficient during training
than the baseline Conv-DQN algorithm, as shown in Figure 1. For example, in the one-one envi-
ronment, our model required approximately 8x fewer samples to reach the solution in the training
environment (compare blue and green curves in the top row). In addition, in more complex en-
vironments with more possible objects and ball-bucket pairings, the baseline Conv-DQN required
increasingly more samples to solve, whereas the Graph-DQN solved in the same number of samples.
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Figure 1: Warehouse results. For the environments described in Table 1 (columns), performance of
the baseline DQN (green), our proposed Graph-DQN (blue), and a variant of Graph-DQN with edges
removed (orange) over the number of training episodes. The top row shows the success rate (fraction
completed within 100 steps) on training environments, and the bottom row shows the success rate
on test environments without additional training. Bold lines are the mean success rate over n = 10
runs, and shaded area denotes the standard error. A moving average of t = 100 episodes was
applied. The Graph-DQN model is more sample efficient during training, and also generalizes to
test environments.

We tested zero-shot transfer learning by placing the trained agents in environments with objects
unseen during training. The Graph-DQN is able to leverage the knowledge graph to generalize,
solving in > 80% of the test environments (see Figure 1, bottom row). The baseline DQN failed
completely to generalize to these environments.

Additional control experiments ruled out confounding factors. The baseline DQN was able to gen-
eralize to an environment with the same pairs as training but new locations, so spatial generalization
was not a trivial failure mode (Success rate=72% in the one-one environment; figure not shown).
When we deleted the edges from the Graph-DQN (orange lines), the model trained slower and
failed to generalize. The No Edge condition still trained faster than the baseline Conv-DQN, possi-
bly due to additional parameters in the KG-Conv. However, that advantage is minimal in our most
complex Warehouse environment, the buckets-repeat. We also tested baselines with significantly
more parameters and different learning rates without improvement.

4.2 PACMAN

We compare Graph-DQN to the baseline Conv-DQN on four symbolic Pacman environments (Fig-
ure 2. The Graph DQN converges significantly faster to a performing control policy than the
convolution-based DQN on all four environments. The difference is particularly noticeable on the
mediumClassic map, where the Graph DQN achieves a significant positive reward of 1,000 within
5,000 episodes, whereas the convolutional model takes over 10,000 episodes to reach a reward of
500. However, we also note that at the end of the training period, both agents have a similar level
of performance. This is expected, since the convolutional model should eventually be able to de-
duce the relations between the symbols with enough training. In the mediumClassic environment,
the Conv-DQN surpassed the Graph-DQN reward after 10,000 episodes, while in capsuleClassic
Graph-DQN sustained a higher final reward. Future work will assess the source of these differences.

4.3 WHAT DO THE AGENTS LEARN?

To understand how the agents are interpreting the edge relations between objects, we observed the
behavior of a trained agent running in an environment while manipulating the knowledge graph
(Figure 3). For simplicity consider the one-one environment, with one bucket pair (b → B) during
training and one pair (c→ B) during testing. A successful behavior is shown in Figure 3a. When we
removed b → B, the agent still pushes the ball, but does not know where to push the ball towards,
suggesting that the agent has learned to ground the feature ebB = 2 as ’goal’ or ’fills’. We swapped
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Figure 2: Pacman results. Performance of the baseline Conv-DQN (green) and GraphDQN (blue)
agent on several symbolic Pacman environments (smallGrid, mediumGrid, mediumClassic, and cap-
suleClassic). Bold lines are the mean, with the individual n = 3 repetitions indicated by the lighter
colors. The symbols are: % - wall, P - player, G - ghost, H - scared ghost, . - coin, o - capsule.

Table 2: Manipulating Pacman behavior. Behavior and score of the Graph-DQN agent on the medi-
umClassic map when various edges are removed or features substituted. Reward is shown as mean±
standard error over n = 100 repetitions.

Variation Reward Behavior
Base 1169± 39 Default behavior
Remove Ghost→Player edge −170± 27 No clear interpretation
Set Ghost→Player to Player→Coin feature −78± 38 Does not avoid ghosts
Remove Player→Scared Ghost edge 558± 25 Does not chase scared ghosts
Remove Ghost→Scared Ghost edge 1161± 29 No effect
Remove Player→Coin edge −376± 20 Pacman moves randomly
Remove Player→Capsule edge 323± 37 Does not eat the capsule
Remove Player→Wall edge −339± 21 Runs into the nearest wall
Remove Ghost→Wall edge 267± 33 No clear interpretation
Remove Scared Ghost→Wall edge 530± 28 Does not chase scared ghosts

the edge features of A → B and A → b, and the agent attempts to push the bucket into the ball.
The knowledge graph could also be manipulated such that the agent pushes a ball into another ball
(Supplement). These studies show that the agent learned the ’push’ and ’fills’ relation and is able to
apply these actions to objects it has never pushed before.

Similarly, in Pacman, if we remove the Player→Scared Ghost edge, the agent no longer
chases the scared ghosts (Table 2). Without an edge to the capsule, the agent no longer eats the
capsule. The agent can also be manipulated to not avoid ghosts by changing the Ghost→Player
feature to the Player→Coin edge relation.

Figure 3: Manipulating Trained Agents in Warehouse. We used agents trained on the base knowl-
edge graph (a), and manipulated their behavior at runtime by changing the input knowledge graph.

Conclusion: The field has long debated the importance of reasoning with symbols (that may incor-
porate prior knowledge) and its compatibility with gradient based learning. Graph-DQN provides
one framework to bridge these seemingly disparate approaches (Garnelo & Shanahan, 2019).
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