
Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

LANGUAGE AS AN ABSTRACTION FOR HIERARCHICAL
DEEP REINFORCEMENT LEARNING

Yiding Jiang∗, Shixiang Gu, Kevin Murphy, Chelsea Finn
Google Research
Mountain View, CA 94043, USA
{ydjiang,shanegu,kpmurphy,chelseaf}@google.com

1 INTRODUCTION

Deep reinforcement learning has seen remarkable advancements in recent times. For example, re-
inforcement learning agents can solve difficult continuous control tasks (Schulman et al., 2015;
Lillicrap et al., 2015b; Gu et al., 2017; Heess et al., 2017) and achieve impressive performance on
many challenging games such as Atari games (Mnih et al., 2015) and Go (Silver et al., 2017). The
generality of reinforcement learning makes it an ideal framework for optimizing a wide range of
sequential decision-making problems. However, many challenges remain for applications of rein-
forcement learning. Questions such as long-horizon planning or receiving instructions from a human
in the loop are still open problems. In this work, we are interested in building intelligent agents that
are able to learn complex, temporally extended skills (e.g. arranging multiple objects) and, at the
same time, reason using language. 1

One approach that attempts to address the temporally extended nature of tasks is hierarchical re-
inforcement learning (HRL) (Dayan & Hinton, 1993; Parr & Russell, 1998). In standard settings
of HRL, the agents leverage a hierarchy of policies with varying levels of temporal and behavioral
abstractions, where the high-level policy achieves long-horizon tasks by controlling the low-level
policies, which focus on more short-term tasks such as moving in a specific direction. While, in prin-
ciple, HRL is a promising framework for solving temporally extended tasks, it is highly non-trivial
to apply it in practice. One challenge of applying HRL is to choose the appropriate abstraction.
Hard-coded abstractions often lack modeling flexibility and are task-specific (Sutton et al., 1999;
Konidaris & Barto, 2007; Heess et al., 2016; Peng et al., 2017), while learned abstractions require
carefully-tuned regularization (Bacon et al., 2017; Harb et al., 2017). One possible solution is to
have the higher-level policy generate a goal state and have the low-level policy try to reach that goal
state. Intuitively, a goal state can be seen as an instruction to the low-level policy. So far, most works
in goal-conditioned reinforcement learning have used simple goal representations such as points in
the state space, which does not scale well into high dimensional state space (Schaul et al., 2015;
Andrychowicz et al., 2017). For instance, in the visual domain, generating high fidelity images is
still an area of active research.

In contrast, language is a flexible representation for transferring a variety of ideas and intentions with
minimal assumptions about the problem setting, while its compositional nature makes it a powerful
abstraction for transferring knowledge and instructions (Grice, 1975; Mordatch & Abbeel, 2018).
In this work, we propose to use language as the interface between high- and low-level policies in
hierarchical reinforcement learning. With a low-level policy that follows instructions, the high-level
policy can produce actions in the space of language, giving us a number of appealing benefits. First,
the low-level policy can be re-used for different high-level objectives without retraining. Second, the
high-level policies are human interpretable as the action space consists of instructions in language;
the low-level policy that understands language instruction also allows human to communicate with
the agent, making it easier to recognize and diagnose failures. Finally, studies have also suggested
that language plays an important role as an abstraction for human reasoning and planning (Gleitman
& Papafragou, 2005; Piantadosi et al., 2012). In fact, the majority of knowledge learning and skill
acquisition we do are through languages throughout our life.

While language is an appealing choice as the abstraction for HRL, training a low-level policy that
is capable of following language instruction is a non-trivial problem as it involves learning from

∗Work done as part of the Google AI Residency Program
1Videos and supplementary materials can be found at https://sites.google.com/view/halsite

1

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

binary reward signals that indicate whether or not the instruction was completed. To address this
problem, we extend and generalize previous work on goal relabeling to the space of language goals,
allowing the agent to learn from many language instructions at once. We evaluate on a new in-
teractive environment that consists of procedurally-generated scenes of objects that are paired with
rich programatically-generated language descriptions. The low-level policy’s objective is to manip-
ulate the objects in the scene such that a description or statement is satisfied by the arrangement
of objects in the scene. On high-level object reconfiguration and sorting tasks, we find that lan-
guage abstractions and hindsight instruction relabeling are critical for learning a wide variety of
these temporally-extended skills.

In summary, the main contribution of our work is three-fold:

1. a framework for incorporating language abstractions into hierarchical RL, with which we find
that the structure and flexibility of language enables agents to solve a variety of long-horizon
control problems.

2. an algorithm for effectively training a multi-task reinforcement learning agent to complete
language-based instructions through hindsight instruction relabeling.

3. an interactive continuous control environment integrated with language tasks inspired by the
CLEVR dataset (Johnson et al., 2017), built on MuJoCo physics simulator (Todorov et al.,
2012).

2 HIERARCHICAL REINFORCEMENT LEARNING WITH LANGUAGE
ABSTRACTIONS

In this section, we present our framework Hierarchical Abstraction with Language (HAL) for train-
ing a 2-layer hierarchical policy with language as the abstraction between the high-level policy and
the low-level policy. We open the exposition with formalizing the problem of solving temporally ex-
tended task with language with HRL. Then we discuss how to train the low-level policy, πl(a|st, g)
conditioned on language instructions, and how a high-level policy, πh(g|st), can be trained using
such a low-level policy.

2.1 PROBLEM STATEMENT

We adopt an object-oriented representation of states by assuming st = {oi}kti=1, where oi ∈ Rdo is
the representation of object i, and kt is the number of objects (which can vary over time). S is the
space of all possible s. We also assume at = {αi}kti=1, where each αi ∈ Rdα acts on individual
the object oi and denote the space of all possible action as A. One generic scenario for complex
decision making problems is one where the agent needs to interact with multiple entities or objects in
the world. A simplified instance that captures this property is the Multi-Armed Bandits. However, in
many problems, the order of the actions matter and the number of objects can vary. Our formulation
captures these characteristics. Finally we assume there is an oracle Ω that can map states to language
statements. Such oracle can be a program that is executed on st similar to CLEVR, a captioning
algorithm for image or other state representation if the ground truth (e.g. deployment outside of
simulation) is not available at training time or even a human supervisor. Concretely, we assume
Ω(st) = {gi}ni=1, so we can specify goals as subset of these statements. Implementation details of
oracle we use can be found in appendix A.1.3.

More precisely, we consider G to be the space of task-relevant Boolean functions whose input is st,
i.e. g : S → {0, 1}. More specifically, we take G to be a set of language statements that can be
evaluated to be either True or False on st. The value of g(st) is 1 if st satisfies the goal, or 0 if the
st does not satisfy the statement. Any goal specified in the state space can be easily expressed by a
Boolean function of this form by checking if two states match or are close to each other.

The low-level policy’s objective is to solve an augmented MDP where G is the range of the oracle
Ω. For simplicity, we assume that Ω’s output is uniform over G. The high-level policy solves a
standard MDP whose state space is the same S as the low-level policy, action space is G, and reward
is sparse. The high-level policy and low-level policy are trained separately, so the same low-level
policy can be reused for different high-level policies. Jointly fine-tuning the low-level policy with a

2

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

specific high-level policy is certainly possible, but we found separate training to be satisfactory even
without any fine-tuning. We leave exploring this direction to future work.

2.2 TRAINING A LANGUAGE CONDITIONED LOW-LEVEL POLICY

(a) Goal is g0: “There is a red ball;
are there any matte cyan sphere
right of it?”. Currently g0(st) =
False

(b) Agent performs actions and in-
teracts with the environment and
tries to satisfy goal.

(c) Resulting state st+1 does not
satsify g0, so relabel goal to g′:
“There is a green sphere; are there
any rubber cyan balls behind it?”
so g′(st+1) = True

Figure 1: Illustration of hindsight instruction relabeling (HIR), which we use to enable the agent to
learn from many different language goals at once.

A straightforward way to represent the reward for the low level policy would be R(st,at, g) =
Est+1∼T (·|st,at)[g(st+1)] or, with a deterministic transition model, R(st,at, g) = g(st+1). How-
ever, optimizing with this reward directly is difficult because the reward signal is only non-zero
when the goal is achieved. Unlike prior work, which uses a state vector as the goal, it is hard to
define distance in the space of language statements and, consequently, difficult to make the reward
signal smooth by giving partial credits such as the `p norm of the difference between 2 states. To
overcome these difficulties, we use a relabeling technique we call hindsight instruction relabeling
(HIR): Instead of relabeling the trajectory with states reached, we relabel the trajectory with the
elements of Ω(st) as the goals2. For more details, see Algorithm 1 for the pseudocode of HIR and
Figure 1 for an illustrated example.

Note that multiple statements can simultaneously be changed from False to True and every statement
can be paraphrased in numerous ways through changing words with their synonyms, rearranging the
order of the words or deleting parts of the corpus. Due to these properties of language, using the
dynamic statements as instructions opens up a wide design space for the relabeling schemes (A.3).

2.3 TRAINING A HIGH-LEVEL LANGUAGE POLICY

With a trained low-level policy πl(a|st, g), the high-level policy can instruct the low-level policy by
generating the goals. This allows the high-level policy to structurally explore with actions that are
semantically meaningful and span multiple time steps. Pseudocode for the algorithm can be found
in the appendix (Algorithm 2).

In principle, the high-level policy, πh(g|s), can be trained with any reinforcement learning algo-
rithm, given a suitable way to generate sentences for the goals. However, generating coherent dis-
crete data such as sentences is still very much an open problem even in the unsupervised learning
settings. Training a language generative model with existing reinforcement learning algorithms is
unlikely to achieve favorable results. The dimensionality of language also makes the discretized ac-
tion space for the high-level policy prohibitively high. Fortunately, while the the size of the instruc-
tions space G scales exponentially with the size of the vocabulary, the elements of G are naturally
redundant – many elements correspond to effectively the same underlying instruction with different
synonyms or grammar. While the low-level policy understands all the different instructions, the

2Note that we use the terms “instruction” and “goal” interchangeably as a goal can be thought of as an
instruction about where to go or what to do.

3

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

Algorithm 1 Hindsight instruction relabeling (HIR)

1: Inputs: off-policy RL algorithm A with pa-
rameter φ; relabeling strategy S; language
statement oracle Ω; environment E; replay
buffer B; number of relabeled future K

2: Initialize A, B, φ
3: for episode i = 1 to M do
4: s0 ← reset E
5: g ∼ U({g ∈ Ω(s0)|g(s0) = 0})
6: τ ← []
7: for step t = 0 to T do
8: Ut ← {g ∈ Ω(st)|g(st) = 0}
9: at ∼ πA(a|st, g)

10: st+1 ← Take action at from st
11: rt ← g(st+1)
12: Vt ← Ut \ {g ∈ Ω(st+1)|g(st+1) =

0}
13: add (st,at, g, rt, st+1,at+1,Vt) to τ
14: if rt = 1 then

15: g ∼ U({g ∈ Ω(st+1)|g(st+1) =
0})

16: end if
17: end for
18: for step t = 0 to T do
19: Store (st,at, g, rt, st+1,at+1) in B
20: for g′ ∈ Vt do
21: Store (st,at, g

′, 1, st+1,at+1) in B
22: end for
23: W← S(τ, t,K)†

24: for (g′, r′) ∈W do
25: Store (st,at, g

′, r′, st+1,at+1) in B
26: end for
27: end for
28: Update A, φ for N steps using minibtach

from B
29: end for
30: † Details in appendix A.3.

high-level policy only needs to generate instruction from a much smaller subset of G to direct the
low-level policy in many cases. We denote such subsets of G as I.

If I is sufficiently small, the problem can be recast as an RL problem with a discrete action space,
and can be solved with algorithms such as DQN (Mnih et al., 2015). This is the approach we adopt in
this work. However, there are a number of alternative options for optimizing the high-level policy,
such as using using continuous action or language embedding (Lillicrap et al., 2015a; Gu et al.,
2016; Schulman et al., 2017) in combination with appropriate recurrent or autoregressive decoders
(Sutskever et al., 2014; Dauphin et al., 2016).

As the instruction often represents a sequence of low-level actions, we take T ′ actions with the
low-level policy for every high-level instruction. T ′ can be a fixed number of steps, or computed
dynamically by a terminal policy learned by the low-level policy like the option framework. While
the latter is a more principled approach, we found rolling out a fixed 5 steps to be sufficient in our
experiments. Further, the choice of termination condition is a design choice that is orthogonal to the
training of the high-level policy. We leave exploring the termination policy to future work.

3 EXPERIMENTS

3.1 LOW-LEVEL POLICY

We evaluate the performance of our low-level policy by the average number of instructions it can
successfully achieve each episode (100 steps) measured over 100 episodes. We demonstrate the
importance of HIR by comparing agents that are trained with and without relabeling.

We also demonstrate the benefit of using language as an abstraction compared to a more naive goal
parameterization based on one-hot encodings. To do this, we start with 600 instructions, which we
paraphrase and modify by swapping synonyms, resulting in about 10,000 total instructions. For
the one-hot encoding, we assign each instruction a varying number of bins in the one-hot vector.
Concretely, we give each instruction of the 600 instruction 1, 4, 10, and 20 bins in the one-hot
vector, which means the effective size of the one-hot vector is 600, 2400, 6000 and 12000. When
sampling goals, each goal is uniformly dropped into one of its corresponding bins. The one-hot
encoding low-level policy is trained with HER. As shown in Figure 2 (middle), the performance of
the algorithm deteriorates as the number of instructions increase. Figure 2 (left) also shows, counter-
intuitively, that HIR with more instructions (10000+ vs 600) learn faster. We hypothesize the reason
to be that with more diversity in sentences, the language model can learn to generalize better rather

4

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

than to memorize, thereby speeding up the learning (Zhang et al., 2016). Figure 2 (right) indeed
shows good generalization performance on unseen instructions based on splitting the instruction
sets train (70%) to test (30%).

To evaluate the importance of compositional structure of language, we compare HIR with compo-
sitional language to HIR with non-compositional language representation. The non-compositional
language representation is obtained by training a Seq2Seq autoencoder (Sutskever et al., 2014) with
GRU and 64 hidden units on the 600 instructions. This autoencoder achieves near 0 cross-entropy
error across the entire train set and achieves perfect token-level reconstruction. This implies that
all information of the sentence is contained in the bottleneck layer. Note that this representation
contains the same information as the original language and the only difference is that the compo-
sitional structure is gone. We found that this autoencoded representation performs worse than all
compositional approaches.

Figure 2: Results for low-level policies in terms of goals accomplished per episode over training steps for
HIR on language representation (left) v.s. one-hot representation (middle). Since the one-hot cannot leverage
compositionality of the language, it suffers significantly as instruction sets grow, while HIR on sentences in fact
learns even faster when instruction sets increase. Figure (right) shows train v.s. test performances of low-level
policies based on a split of instruction sets, showing very good generalizations on unseen instructions for HIR.
Non-compositional representation (left red) performs worse than all compositional representation.

3.2 HIGH-LEVEL POLICY

(a) Object Arrangement (b) Object Ordering (c) Object Sorting (2D)

Figure 3: Results for high-level policy on the proposed 3 different tasks. Green curves for HAL include the
steps for training the low-level policy. In all settings, HAL demonstrates faster and more stable learning than
the baseline DQN with a better asymptotic performance.

We evaluate HAL with 80 instructions (i.e. |Ah| = 80) on 3 tasks with highly sparse binary reward
by comparing to a vanilla DQN that uses the low-level policy’s action space, which is to push
individual object in one of the 8 cardinal directions (i.e. |Anh| = 8 × k where k is the number of

5

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

objects in the scene and k is 5 for all 3 tasks). A possible goal configuration of solving these tasks
are in Figure 3 (top); however, only relative spatial relationship is considered so there exist many
different solutions. A more detailed description of these tasks can be found in appendix A.1.2.

Plotted in Figure 3 (bottom) are cumulated reward per episode averaged over 3 runs with standard
deviation plotted in Figure 3. In all 3 tasks, HAL (red curves) converges faster than the DQN base-
line and shows much smaller variance in the performance. In the arrangement task, HAL performs
asymptotically slightly better than DQN while in object ordering and object sorting HAL’s perfor-
mance is superior in both convergence speed and final performance.

Note that while a single trained low-level policy is used across all 3 tasks, a case can be made for
the training time of the low-level policy to be taken into account when measuring the performance
of the high-level policy. As such, we use a low-level policy that is trained for 6 × 105 steps with
approximate performance of 5 goals/episode. The training curves adjusted with training step of the
low-level policy is colored green in Figure 3. Even with an imperfect low-level policy, HAL still
compares favorably against the DQN baseline.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in Neural Information Processing Systems, pp. 5048–5058, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI, pp. 1726–
1734, 2017.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder-decoder approaches, 2014.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks, 2016.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances in neural infor-
mation processing systems, pp. 271–278, 1993.

Lila Gleitman and Anna Papafragou. Language and thought. Cambridge handbook of thinking and
reasoning, pp. 633–661, 2005.

H Paul Grice. Logic and conversation. 1975, pp. 41–58, 1975.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning
with model-based acceleration. In International Conference on Machine Learning, pp. 2829–
2838, 2016.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In Robotics and Automation (ICRA),
2017 IEEE International Conference on, pp. 3389–3396. IEEE, 2017.

Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is not an option:
Learning options with a deliberation cost. arXiv preprint arXiv:1709.04571, 2017.

Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin Riedmiller, and David Silver.
Learning and transfer of modulated locomotor controllers. arXiv preprint arXiv:1610.05182,
2016.

Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa, Tom Erez,
Ziyu Wang, Ali Eslami, Martin Riedmiller, et al. Emergence of locomotion behaviours in rich
environments. arXiv preprint arXiv:1707.02286, 2017.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2901–2910, 2017.

6

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

George Konidaris and Andrew G Barto. Building portable options: Skill transfer in reinforcement
learning. In IJCAI, volume 7, pp. 895–900, 2007.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2015a.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015b.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Ronald Parr and Stuart J Russell. Reinforcement learning with hierarchies of machines. In Advances
in neural information processing systems, pp. 1043–1049, 1998.

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne. Deeploco: Dynamic
locomotion skills using hierarchical deep reinforcement learning. ACM Transactions on Graphics
(Proc. SIGGRAPH 2017), 36(4), 2017.

Steven T Piantadosi, Joshua B Tenenbaum, and Noah D Goodman. Bootstrapping in a language of
thought: A formal model of numerical concept learning. Cognition, 123(2):199–217, 2012.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International Conference on Machine Learning, pp. 1312–1320, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks,
2014.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–
5033. IEEE, 2012.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning, 2015.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

7

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

A APPENDIX

A.1 ENVIRONMENT AND TASKS

In this section, we present the details about the environment we use, the language oracle, and the
high-level tasks of interest.

A.1.1 MUJOCO INTERACTIVE ENVIRONMENT

In robotics, manipulating and rearranging objects is a fundamental way through which robots inter-
act with the environment, which is often cluttered and unstructured. To succeed in these environ-
ments, the agents must be able to handle different number of objects with varying properties. Our
environment contains up to 5 objects, and each object is uniquely indexed by an integer i. We will
refer to all the elements in the environment collectively as the world state.

Each object is represented by oi that contains the 3d coordinate, pi, of its center of mass, and a
one-hot representation of its 4 properties: color, shape, size, and material. The environment keeps
an internal relation graph Gadj for all the objects currently in the scene. The relation graph is stored
as an adjacency list whose ith entry is a nested array storing oi’s neighbors in 4 cardinal directions
left, right, front and behind. The criterion for oj to be the neighbor of oi in certain direction is if
||pj − pi|| ≤ rmax and the angle between pj − pi and the cardinal vector of that vector is smaller
than βmax. After every interaction between the agent and the environment, oi and the relation graph
are updated to reflect the current world state.

Before each interaction, the environment stores a set of language statements that are not satisfied
by the current world state. These statements are re-evaluated after the interaction. The statements
whose values change to True during the interaction can be used as the goals or instructions for
relabeling the trajectories (cf. pre and post conditions used in classical AI planning). Assuming the
low-level policy only follows a single instruction at any given instant, the reward for every transition
is 1 if the goal is achieved and 0 otherwise. The action space we use in this work consists of a point
mass agent pushing one object in 1 of the 8 cardinal directions for a fixed number of frames, so the
discrete action space has size 8kt, where kt ≤ 5 is the number of objects.

A.1.2 HIGH LEVEL TASKS

The high-level policy’s reward function can be tailored towards the task of interests, where we
propose three difficult benchmark tasks with extremely sparse rewards. The first task we consider
is object arrangement. We sample a random set of statements that can be simultaneously satisfied
and, at every time step, the agent receives a reward of -10.0 if at least 1 statement is not satisfied
satisfied and 0.0 only if all statements are satisfied. At the beginning of every episode, we reset
the environment until none of the statements is satisfied. The second task is object ordering. An
example of such a task is “arrange the objects so that their colors range from red to blue in the
horizontal direction, and keep the objects close vertically”. In this case, the configuration can be
specified with 4 pair-wise constraint between the objects. We reset the environment until at most 1
pair-wise constraint is satisfied involving the x-coordinate and the y-coordinate. At every time step,
the agent receives a reward of -10.0 if at least 1 statement is not satisfied satisfied and 0.0 only if
all statements are satisfied. The third task is object sorting. In this task, the agent needs to sort 4
object around a central object; further, the 4 objects cannot be too far away from the central object.
Once again, the agent receives a reward of -10.0 if at least 1 statement is not satisfied satisfied and
0.0 only if all statements are satisfied and environment is reset until at most 1 constraint is satisfied.
Images of end goal for each high-level tasks are show in the top row of Figure 3.

A.1.3 LANGUAGE ORACLE

In this work, each language statement generated by the environment is associated with a functional
program that can be executed on the environment’s relation graph to yield an answer that reflects
the value of that statement on the current scene. The functional programs are built from simple
elementary operation such as querying the property of objects in the scene, but they can represent
a wide range of statements of different nature and can be efficiently executed on the relation graph.
This scheme for generating language statements is reminiscent of the CLEVR dataset Johnson et al.

8

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

(2017) whose code we drew on and modified for our use case. Note that a language statement
that can be evaluated is equivalent to a question, and the instructions we use also take the form of
questions. For simplicity and computational efficiency, we use a smaller subset of question family
defined in CLEVR that only involves pair-wise relationships between the objects. We plan to scale
up to full and beyond CLEVR scale in future works. We omit the full implementation detail of the
functional program which can be found in the CLEVR paper.

While evaluating the statements is relatively cheap, generating these statements can be expensive
because this process involves performing graph searches. Running such operation at every time
step incurs a non-trivial overhead. One solution to this problem is to keep a copy of all possible
statements. This approach works well if the variation of the objects is small (e.g. 5 spheres with 5
different colors but the same shape, size, and material), but it does not scale to more general case
where all properties of the objects can change. In fact, it scales exponentially with the number of
possible properties.

Observe that while the number of total questions is large, the majority of the questions will always
evaluate to False on the given world state. For example, a statement that contains a large blue
metallic cube will never be True on a scene that does not contain such object. In other words, these
statements are not viable. Therefore, a sensible alternative would be to keep a fixed set of objects and
their corresponding viable questions between every episode of training, and the reset only randomly
perturbs the coordinates of the objects; at the beginning of each episode, with probability presample
we sample a new set of objects and their corresponding viable questions. While the search for
viable questions is expensive, at every interaction the number of statements that need to be checked
is greatly reduced. In practice, this technique significantly speeds up the simulation.

A.2 MODEL IMPLEMENTATION DETAILS

Algorithm 2 Training high-level policy

1: Inputs: Any RL algorithm A; reward function R : S→ [rmin, rmax]∗; instruction set I; instruc-
tion encoder φ; low-level policy πl(a|s, g)

2: Initialize A
3: for episode i = 1 to M do
4: s0 ← reset E
5: for step t = 0 to T do
6: g ← Sample from I using πh(g|st)
7: s′ ← st
8: for substep t′ = 1 to T ′ do
9: a′ ← Sample from πl(a|s′, g)

10: s′ ← Take action a′ from s′

11: end for
12: st+1 ← s′

13: Store experience
14: end for
15: Update A accordingly with experience collected
16: end for
17: *Here we assume the reward is only based on the new state for simplicity

Low-level policy. To handle a variable number of relations between the different objects, and their
changing properties, we built a goal-conditioned self attention policy network. Given a set of k
object {oi}ki=1, we first create pair-wise concatenation of the objects, O = {oi‖oj}k,kj=1,i=1. Then
we transform every pair-wise vectors with a single neural network f1 into D = {f1(oi‖oj)}k,kj=1,i=1.
A recurrent neural network with GRU (Cho et al., 2014), f2, embeds the instruction g into a real
valued vector g̃ = f2(g). We use the embedding to attend over every pair of object to compute
weights {wi = 〈g̃,di〉|di ∈ D}. We then compute a weighted combination of all pi where the
weights are equal to the softmax weights exp(wi)/

∑k×k
j=1 exp(wj). This combination transforms

the elements of D are combined into a single vector d̄ of fixed size. Each oi is concatenated with d̃
and d̄ into o′i = (oi‖g̃‖d̄). Then each o′i is transformed with the another neural network f3 whose

9

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

output is of dimension dα. The final output Q = {f3(oi‖g̃‖d̄)}ki=1 is in Rk×dα which represents all
state-action values of the state.

This policy network is trained with HIR in a similar way to Schaul et al. (2015). This training
procedure can be seen as a goal conditioned version of DQN. Training minibatches are uniformly
sampled from the replay buffer. Each episode lasts for 100 steps. When the current instruction is
accomplished, a new one that is currently not satisfied will be sampled. To accelerate the initial
training and increase the diversity of instructions, we put a 10 step time limit on each instruction, so
the policy does not get stuck if it is unable to finish the current instruction.

High-level policy. (2) For simplicity, we use a vanilla DQN with double Q-learning (van Hasselt
et al., 2015) to train the high-level policy. We uses an instruction set that consists of 80 instructions
(|I| = 80) that can sufficiently cover all relationships between the objects. We roll out the low-level
policy for 3 steps for every high-level instruction (T ′ = 3). Training mini batches are uniformly
sampled from the replay buffer. One single set of hyperparameter is used for all experiments.

A.3 RELABELING STRATEGY

HER (Andrychowicz et al., 2017) demonstrated that the relabeling strategy for trajectories can have
significant impacts on the performance of the policy. The most successful relabeling strategy is the
“k-future” strategy where the goal state and the reward are relabeled with k states in the trajectories
that are reached after the current time step and the reward is discounted based on the discount factor
γ and how far away the current state is from the future state in `2 distance. We modify this strategy
for relabeling a language conditioned policy. One challenge with language instruction is that the
notion of distance is not well defined as the instruction is under-determined and only captures a
part of the information about the actual state. As such, conventional metrics for describing distance
between sequences of tokens (e.g. edit distance) do not actually capture the information we are
interested in. Instead, we adopt a more “greedy” approach to relabeling by putting more focus on
1-step transition where the instruction is actually fulfilled. Namely, we store all transition tuples in
Vt to the replay buffer B (Algorithm 1). For future relabeling, we simply use the reward discounted
by time steps into the future to relabel the trajectory. While the discounted reward does not usually
capture the “optimal” or true discounted reward, we found it to provide sufficient learning signal.
Detailed steps are shown below (Algorithm 3).

Algorithm 3 Future Instruction Relabeling Strategy (S)

1: Inputs: Trajectory τ ; current time step t; number of relabeled future K
2: ∆← []
3: count← 0
4: while count < K do
5: future ∼ Unif({t+ 1, . . . , |τ |})
6: (s,a, g, r, s′,a′,V)← τ [future]
7: if |V| > 0 then
8: g′ ∼ Unif(V)
9: r′ ← r · γfuture−t

10: Store (g′, r′) in ∆
11: count← count + 1
12: end if
13: end while
14: return ∆

10

	Introduction
	Hierarchical Reinforcement Learning with Language Abstractions
	Problem statement
	Training a language conditioned low-level policy
	Training a high-level language policy

	Experiments
	Low-level policy
	High-level policy

	Appendix
	Environment and Tasks
	Mujoco Interactive Environment
	High level tasks
	Language oracle

	Model implementation details
	Relabeling Strategy

