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1 INTRODUCTION

Recent advances in deep reinforcement learning (RL) have largely relied on model-free approaches,
demonstrating strong performance on a variety of domains (Silver et al.,2016; Mnih et al., 2013}
Zhang et al [2018c). However, model-free techniques do not have good sample efficiency (Sutton,
1990) and are difficult to adapt to new tasks or domains (Nichol et al.,|2018])). A key reason for this is
a single value function is used to represent both the agents policy and its knowledge of environment
dynamics, which can result in heavy overfitting to a particular task Zhang et al.|(2018b). Model-based
RL allows for decoupling the dynamics model from the policy, enabling better generalization and
transfer across tasks (Zhang et al., 2018a)). The challenge with model-based RL, however, lies in
estimating an accurate dynamics model of the environment while simultaneously using it to learn a
policy. One way to alleviate this problem is to initialize dynamics models with universal task-agnostic
priors to allow for more efficient and stable model-based RL.

One such prior is an understanding of physical laws, which proves quite valuable in navigating the
world. In this work, we demonstrate that learning a task-agnostic dynamics prior (e.g. concepts like
velocity, acceleration or elasticity) allows for accurate and more efficient estimation of the dynamics
of new environments, resulting in better policies. In order to obtain a prior for physical dynamics,
we perform unsupervised learning over raw videos containing moving physical objects objects. The
parameters of the model implicitly capture general laws of physics. For model-based RL, we initialize
the dynamics model with these pre-trained parameters and fine-tune them on the specific task, while
simultaneously learning a policy for the task. We utilize the dynamics model to predict future frames
up to a finite horizon, which are then used as additional input into a policy network. Our use of
task-agnostic dynamics priors allows for better generalization across environments.

Learning a good future dynamics model is challenging mainly due to: a) isolation of the dynamics of
each entity and b) accurate modeling of localized interactions around the entity. To overcome these
issues, we propose SpatialNet, with a spatial memory block that captures localized dynamics. The
spatial memory module operates by performing convolution operations over a temporal 3-dimensional
state representation that keeps spatial information intact. This allows the network, which includes
residual connections, to capture localized physics of objects such as directional movements and
collisions in a fine-grained manner as well as efficiently keep track of static background information.
This results in lower prediction error, generalization and size invariance.

We evaluate our approach on three different RL scenarios. First, we consider PhysWorld, a suite of
randomized 2D physics-focused games, where learning object movement is crucial to a successful
policy. Next we consider PhysShooter3D, a 3D environment with rigid body dynamics and partial
observations. Finally, we also evaluate on a stochastic variant of the popular ALE framework
consisting of Atari games|Machado et al.|(2017). In all scenarios, we first demonstrate the value of
learning a task-agnostic prior for model dynamics Further, we also show that the dynamics model
fine-tuned on these tasks transfer better to new tasks.

2 RELATED WORK

There are two main lines of work that are closely related to this paper. The first is that of learning
and using generic video prediction models for reinforcement learning. The second direction is to
incorporate physics priors into parameterized dynamics models for future state prediction.

*Work done during fellowship at OpenAl
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Video prediction models. Our frame prediction model is closest in spirit to the Convolutional LSTM
(Xingjian et al.,|2015) Similar architectures that incorporate differentiable memory modules have been
proposed (Patraucean et al., 2015), with applications to deep RL (Parisotto and Salakhutdinov, [2017).
While the ConvLSTM model is reasonably effective at predicting future frames, the additive LSTM
update equations are not well suited to capture localized physical interactions[] Our architecture
is simpler and more natural at capturing physical dynamics and entity movements — this allows for
better generalization as we demonstrate in our experiments.

Several recent methods have also combined policy learning with future frame prediction in different
ways. Action-conditioned frame prediction has been used to simulate trajectories for policy learn-
ing (Oh et al.l 2015; [Finn et al.l [2016; [Weber et al.,[2017)). Predicted frames have also been used
to incentivize exploration in agents, via hashing (Yin et al., 2017} or using the prediction error to
provide intrinsic rewards (Pathak et al.,[2017). The main departure of our work from these papers is
that we learn a frame prediction model that is not conditioned on actions, and from videos not related
to a task, which allows us to employ the model on a variety of tasks.

Parameterized physics models. Incorporating physics priors into learning dynamics models of
environments has been the subject of some recent work. [Cutler et al.|(2014)); |Cutler and How|(2015)
learn Bayesian nonparametric priors for physical systems and use it to guide policy search. Scholz
et al.| (2014) model latent physical parameters like mass and friction and use an external physics
simulator to predict future states for planning. (Kansky et al., [2017) learn a generative physics
simulator and demonstrate its usefulness in transferring policies across task variations. Xie et al.
(2016) develop a model that incorporates prior knowledge about the dynamics of rigidbody systems
in order to perform model-predictive control. While all these approaches demonstrate the importance
of having relevant priors to sample efficient model learning, they all require some form of manual
parameterization. In contrast, we learn physics priors in the form of the parameters of a predictive
neural network, only using raw videos.

3 FRAMEWORK

Our goal is to demonstrate that acquiring task-agnostic dynamics priors from raw videos helps agents
learn faster in new environments. We first train a suitable neural network to predict pixels in the
next frame given the previous k frames of video. We use videos of objects moving according to
classical mechanics, without any extra annotations. Next, we then use the pre-trained frame predictor
to initialize the dynamics model for an RL agent. The dynamics model is used to predict a few
frames into the future and use them as additional context for a control policy. During this phase, the
dynamics model is also simultaneously fine-tuned using trajectories observed in the task environment.

3.1 REINFORCEMENT LEARNING WITH DYNAMICS PREDICTORS

Consider a Markov Decision Process (MDP) setup represented by the tuple (S, A, T, R), where
S is the set of all possible states, A is the set of actions available to the agent, T is the transition
distribution, and R is the reward function. Assuming our dynamics model to be €2, and given the
current state s;, we first apply our prediction model iteratively to obtain future state predictions:

Se41 = Ust), 8642 = QSe11)s oo Sk = QBp4n—1)

We then train a policy network to output actions using all these predicted states as input in addition to
the current state, a; = 7(s¢, St41, - St4k)-

For the policy network, we follow the network in [Mnih et al.| (2015) and train using Proximal
Policy Optimization (PPO) (Schulman et al.,[2017) algorithm. Simultaneously, we also update the
parameters of the dynamics model using the transitions from the environment. However, policy
gradients are not back-propagated to the dynamics predictor. We call this agent an Intuitive Physics
Agent (IPA) since it first learns an intuitive prior of physical interactions and uses it to learn policies.

3.2 DYNAMICS PREDICTION

Prior work has investigated a variety of frame prediction models. LSTM-based recurrent networks (Oh
et al., | 2015) are not ideal for this task since they encode the entire scene into a single latent vector,
thereby losing the localized spatio-temporal correlations that are important for making accurate

*While the model theoretically can learn to ignore unnecessary operations, optimizing the parameters
effectively is difficult because of lack of proper inductive bias in the architecture.
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physical predictions. On the other hand, the ConvLSTM (Xingjian et al., |2015) architecture has
localized spatio-temporal correlations, but is not able to accurately maintain global dynamics of
entities due to LSTM state updates and limited separation of stationary and non-stationary objects.
(as also seen in our experiments in Section [.T).

Predicting the physical behavior of an entity requires a model that can perform two crucial operations
— 1) isolation of the dynamics of each entity, and 2) accurate modeling of localized spaces and
interactions around the entity. In order to satisfy both desiderata, we propose a new architecture,
SpatialNet, which uses a spatial memory that explicitly encodes dynamics that are updated with
object movement through convolutions. This allows us to implicitly capture and maintain localized
physics, such as entity velocities and collisions between entities, in our frame prediction model and
results in significantly lower long term prediction error.

SpatialNet Architecture SpatialNet is conceptually simple and consists of three modules (Diagram
in Supplement). The first module is a standard convolutional encoder £ that converts an input image
z into a 3D representational map z. The second module is a spatial memory block, o, that converts z
and the hidden state h from the previous timestep into an output representation o and new hidden
state h’. Finally, we have a convolutional decoder D that predicts the next frame z’ from o. Both the
encoder and decoder modules (£ and D) use two convolutional layers each with residual connections.

We implement the spatial memory block o as a 2D convolution operation. The module takes in a
previous hidden state h; and input z; at timestep ¢, both of shape k£ x n x n where k is the number of
channels and n x n is the dimensionality of the grid. We then perform the following operations:

iy = f(Ce ® [h; 21]); we = f(Cu ® [ig; )

hi = f(Cayn @ ur); 0 = f(Cq® (245 hig1]) )
where @ denotes a convolution, [;] denotes concatenation, C., C,,, Cayn,» Cq are convolutional
kernels and f is a non-linearity (we use ELU (Clevert et al., 2015)). Intuitively, the SpatialNet
architecture biases the module towards storing relevant physics information about each entity in
a block of pixels at the entity’s corresponding location. This information is sequentially updated
through the convolutions, with convolution as dynamics, while static information such as background
texture are passed directly through the input encoding z; and dynamics is . We note that our spatial
memory is not action-conditional, which allows us to learn from task-independent videos, as well as
generalize better to new environments.

4 EXPERIMENTS

We perform two empirical studies to evaluate our hypothesis. First, we evaluate various frame
prediction models, including our proposed SpatialNet, in terms of their capacity to model physical
interactions and predict future states (Section[d.1I)). Then, we investigate the use of these dynamics
predictors for policy learning in different environments (Section[d.3)).

Physics video dataset In order to train a prediction model specifically for physical interaction, we
generate a new video dataset, PhysVideos, using a 2-D physics engine Pymunkl Each video in the
dataset has frames of size 84 x 84 x 3 with 4-8 different shapes (such as squares or circles) moving
inside a room with up to 3 randomly generated interior walls.

4.1 FRAME PREDICTION

Baselines We compare our model, SpatialNet, with RCNet (Oh et al., |2015])), which uses a LSTM
encoder, ConvLSTM (Xingjian et al., |2015) which uses all inner operations of an LSTM with
convolutions and ConvLSTM + Residual from input encoding to output encoding. We train all
prediction models using mean squared error (MSE) loss. We use the Adam optimizer (Kingma and
Ba, 2015) in our experiments with a learning rate of 104,

Results Overall, we find that SpatialNet achieves significantly lower test multi-step MSE and fewer
loss objects than all other baselines. SpatialNet is able to maintain both objects (which fails on RCNet)
and shape (which fails in ConvLSTM). Furthermore, SpatialNet is able to maintain background
details. We also find that SpatialNet structure allows it to generalize better to datasets of different
dynamics and input sizes, as well as noised inputs. We provide quantitative numbers, and analysis of
generalization, as well as qualitative results in the supplement.
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PPO + IPA + IPA + 2A + IPA + TPA +
Environment PPO VF RCNet ConvLSTM  SpatialNet ISP JISP SpatialNet SpatialNet
(Blink) (PhysVideos)
PhysGoal 17.7(0.1) 19224) 207+3.1 21.56+21 164+62 152+12 182+55 246+£28 30.8+62

PhysForage 389 £8.9 404454 463+£234 3947+£7.0 2075+20 453+55 1243+£27.1 488+53 506%115
PhysShooter 232 +13 26.1+29 31.7+10 29.1+16 193+£07 186+1.1 28615 31.0+19 423+£29

Table 1: Average scores (along with standard deviation) obtained in PhysWorld environments after 10 million
frames of training. Scores are rewards over 100 episodes, averaged over runs with 3 different random seeds. IPA
+ SpatialNet consistently outperforms the other approaches. RCNet, SpatialNet, ConvLSTM are pretrained on
PhysVideos. PPO+VF = PPO with Value Function Expansion. SpatialNet (Blink) refers to a model trained on
videos with blinking objects.
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Figure 1: Training curves for PPO and IPA agents on PhysWorld environments. In PhysGoal and PhysForage,
IPA demonstrates better performance during later stages of training. In PhysShooter, IPA provides better
performance early on because in this game planning is essential since a player can only fire one bullet at a time.

4.2 PREDICTING PHYSICAL PARAMETERS

To further probe the representations learned by the frame prediction models, we also tested their
ability to predict physical properties of environments (e.g. elasticity or drag) from videos. Overall, we
found that SpatialNet learned better physical representations than ConvLSTM. Furthermore, we found
that learning from physics videos allowed significantly better physical parameter prediction compared
to other domains such as Atari. We provide quantitative numbers and details in the supplement.

4.3 REINFORCEMENT LEARNING

In this section, we describe the use of SpatialNet to accelerate reinforcement learning We perform
empirical evaluations on three different platforms - a suite of 2D games (PhysWorld), a 3D partially
observable environment, and a stochastic version of Atari games (Machado et al., 2017). We
demonstrate that IPA with SpatialNet pre-training outperforms existing approaches in all platforms.

Experimental setup In our experiments, we use SpatialNet to predict the next klﬂfuture frames.
We then stack the current frame with the k predicted frames and use this as input to a model free
policy. We use the Adam optimizer with learning rate 1e-4 to train model predictions and the same
set of hyper-parameters as in|Schulman et al.|(2017). For our policy network, we use the architecture
described in Mnih et al.| (2015)). We report numbers averaged over 3 different random seeds.

Baselines We compare our agent (IPA) with a number of different baselines with number of input
frames balanced, PPO (Schulman et al.}|2017)) , PPO + VF (Feinberg et al.;2018), I2A (Weber et al.|
2017), ISP, where we use the hidden layer of SpatialNet as input to a policy network, JISP, where we
include auxiliary frame prediction loss with ISP and IPA with other frame prediction models.

PhysWorld We first consider PhysWorld, a new collection of three fully randomized physics-centric
2D games that we created. These games require an agent to accurately predict object movements
and rotations in order to perform well. PhysGoal is a navigation task to reach goals while avoiding
objects, PhysForage is an object gathering task, and PhysShooter requires a stationary agent to shoot
selected moving objects while preventing collisions. Each environment has different colors and
sizes or objects than those used to train the dynamics predictor in Sectiond] We provide a detailed
description of each task in the supplementary material.

Results: We detail the performance of our approach and baselines in Table [I] and show learning
curves in Figure[I] Quantitatively, we find that our approach, IPA + SpatialNet (PhysVideos), obtains
significant gains over most baselines in all three tasks in PhysWorld using IPA with SpatialNet. We
find that IPA with RCNet or ConvLSTM provides less benefits, due to slower learning than SpatialNet.
We also find PPO with value expansions (PPO+VF) also provides slight gain, I2A leads to no gains

TWe find k=3 to work well in our experiments.
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Label Assault Asteroids Breakout DemonAttack Enduro

PPO 29322 41532 1321.0+£233.5 19.7+09 55109 +£412.5 376.7£10.5
IPA  2968.4 + 124.0 20984 + 102.0 234+10 6793.6 £558.0 398.6+23.0

MSE 0.0023 0.0023 0.00029 0.0032 0.00230
Label  FishingDerby Frostbite IceHockey Pong Tennis
PPO 6.7 £ 10.1 13425 £ 21545 -59+0.3 6.6 £ 14.1 -6.5 £ 2.1
TPA 9.3+3.0 1701.1 + 24850 -6.1 +£0.0 22+£13.0 -38+1.0
MSE 0.00150 0.00110 0.000035 0.00016 0.00075

Table 2: Scores (and standard deviation) obtained on Stochastic Atari Environments with sticky actions (actions
repeated with 50% probability at each step). Scores are average performance over 100 episodes after 10M
training frames, over 5 different random seeds with included standard deviations.

in performance, likely due to a global encoding of a image destroying local dynamics information

of objects. Both ISP and JISP perform worse than IPA except on PhysForage. On PhysForage, we
find that JISP performs better, likely due to increased capacity compared to IPA. We observe that
SpatialNet trained on videos with blinking objects does not provide as much of a benefit, pointing to
the fact that our full model is learning some aspects of dynamics beyond just object appearances.

Figure |1|shows the relative training rates of policies under PPO and IPA. In Phys-Shooter we see
immediate benefits in using a physics model, as physics knowledge of the future is crucial as the
agent only gets one action approximately every 4-5 frames. In Phys-Goal and Phys-Forage, we see
long term benefits in knowing future physics as this knowledge allows the agents to more efficiently
collect points.

PhysShooter3D Additionally, we also evaluate on PhysShooter3D, a 3D physics game which we
construct using Bullet (Coumans| [2010). We add gravity to the world and generate moving projectiles
that follow bouncing parabolic trajectories. We then render 2D images from a particular viewpoint,
causing moving objects to be partially or fully occluded at times. With these additional factors,
learning dynamics is even more challenging. The game requires a stationary agent to fire bullets at
selected 3D projectiles without itself being hit by any projectiles. We found that PPO obtained a
score of 0.86 = 0.28 while IPA + SpatialNet obtained 1.73 4= 0.09 and IPA using Ground truth frames
obtained 4.16 = 0.84. This demonstrates that IPA generalizes well to partially observed settings, with
still room for improvement by performing better frame prediction.

Stochastic Atari Games In addition to PhysWorld and PhysWorld3D, we also investigate the
performance of IPA on a stochastic version of the Arcade Learning Environment (ALE) (Bellemare
et al.,|2013)). The original ALE is fully deterministic (except for random starts) and hence, a dynamics
predictor would not provide much value. We modify ALE by adding sticky actions, where an agent
repeats its last action with probability p = 0.5. We evaluate performance on all Atari games and in
more detail on selected subset of 10 games though we thought had relevant physics features before
evaluation. Experiments on all Atari environments were run with 5 seeds.

Results: From Table 2] we observe that IPA outperforms PPO in 8 out of the 10 different tasks on
pre-selected physics based games, and outperforms PPO on 31 of the 49 total evaluated Atari games.
On Pong, where IPA performed worse than PPO, we found that the agents learned to place paddles
at one particular location where without paddle movement, the ball would bounce and score points.
Similarly, on Ice Hockey, we found that agents can learn to permanently stall the ball. Under such
situations, there is no added advantages to predicting dynamics, explaining the reduced scores of IPA.
Interestingly, we found that MSE error of prediction in Atari is significantly lower than in the physics
environments, indicating determinism still in Atari.

4.4 TRANSFER AND GENERALIZATION

We further analyze transfer of IPA across different tasks. We find that initializing SpatialNet with
random parameters does not perform very well, but using a pretrained SpatialNet pretrained on
PhysVideos provides better performance. We observe that transferring a SpatialNet model fine-tuned
on a different task like PhysForage/PhysGoal results in even greater performance improvements.
Interestingly, we note that transferring just the dynamics model in IPA results in a larger performance
gains than transferring both model and policy. For instance, transferring the model from PhysForage
results in a score of 53.7 while transferring both model+policy gets a lower score of 40.4. This
provides further evidence that decoupling model learning from policy learning allows for better
generalization. We provide a quantitative numbers in the supplement.
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5 CONCLUSION

We have proposed a new approach to model-based reinforcement learning by learning task-agnostic
dynamics priors and have demonstrated its advantages over model-free techniques in transfer and
performance.
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A MODEL OVERVIEW

We provide an overview of SpatialNet in Figure 2]

SpatlalNet
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Figure 2: Overview of the SpatialNet architecture. SpatialNet takes an RBG image as input and passes it into
encoder (£) consisting of two residual blocks to form an input encoding z;. z: is processed by a spatial memory
module (o) to obtain an output representation o, which is used by the decoder (D) to predict the next frame.
The spatial memory stores meta information about each entity and its locality. See SectionElfor more details.

B ADDITIONAL DYNAMIC PREDICTION EXPERIMENTS

B.1 FRAME PREDICTION

Model Istep Sstep 10step Objects Lost
RCNet 0.0061 0.0140 0.0268 1.0
ConvLSTM 0.0026  0.0303 0.0503 0.4
ConvLSTM + Residual 0.0026 0.0141 0.0210 0.45
SpatialNet 0.0024 0.0114 0.0176 0.13

Table 3: MSE for multi-step prediction on PhysVideos (lower is better). All models were trained with 1 step
prediction loss. SpatialNet suffers least from compound errors during prediction, and is able to maintain objects
and dynamics more consistently (Figure[3). Number of objects lost (after 20 steps) was determined manually by
evaluating 15 random videos in the test set.

From Table [3] we see that SpatialNet achieves a lower test MSE compared to all the baselines,
especially for multi-step predictions. This suggests that SpatialNet encourages better dynamic gener-
alization compared to RCNet and ConvLSTM. Trajectories in the supplement show that SpatialNet is
able to accurately maintain the number of objects in video even after 20 steps, while the baselines suf-
fer from merging of objects (RCNet) or loss of shape information (ConvLSTM). Further, SpatialNet
is also able to maintain background details such as walls that are quickly lost in RCNet, as the spatial
memory structure allows the input to easily remember fixed background information. We also find
that spatial memory’s overall structure allows it to be very resistant to input noise as well as better
generalize to unseen environments — please see the supplementary material for detailed analyses.
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€ RCNet ConvLSTM SpatialNet (ours)

0 0.0061 0.0026 0.0024
0.1 0.0078 0.0030 0.0026
0.5 0.0268 0.0072 0.0062

Table 4: MSE loss on physics prediction data-set on on single-step prediction with test inputs corrupted with
Gaussian noise of magnitude e (model trained with no corruption). Due to its local nature, SpatialNet suffers less
form errors in inputs and is able to maintain object numbers/dynamics more consistently even with domain shift.

@ P
0-. QC‘

Label Frames Predicted Frames

GT

SpatialNet

RCNet

ConvLSTM

Figure 3: Visualization of multi-step predictions of SpatialNet, RCNet, and ConvLSTM variants, along with
ground truth (GT). After 20 steps of self prediction, SpatialNet maintains the internal wall and all seven objects in
the scene while RCNet loses the internal wall and 3 of the moving objects. ConvLSTM loses shape information
and has less accurate dynamics prediction. SpatialNet is most consistent in obeying physical laws.

B.2 SENSITIVITY TO CORRUPTION OF INPUTS

We investigate the effects of noisy observations in the input domain at test time on both SpatialNet
and RCNet, by adding different amounts of Gaussian random noise to input images (Table[d). We
find that SpatialNet is more resistant to noise addition. SpatialNet predictions are primarily local,
preventing compounding of error from corrupted pixels elsewhere in the image whereas RCNet
compresses all pixels into a latent space, where small errors can easily escalate.

B.3 QUALITATIVE VISUALIZATION

We provide visualizations of multistep rollout predictions from models in Figure [3| We provide
visualizations of video prediction on each of the generalization datasets in Figure 4] and Figure [5]

B.4 DATASET GENERALIZATION.

We test generalization by evaluating on two unseen datasets. For the first, we create a test set where
objects are half the size of the training set and initialized randomly with approximately twice the
starting velocity. In this new regime, we found that RCNet had a MSE of 0.0115, ConvLSTM has a
MSE of 0.0067, while SpatialNet had a MSE of 0.0039. We find RCNet is unable to maintain shapes
of the smaller objects, sometimes omitting them, while ConvLSTM maintains shape but is unable
to adapt to new dynamics. In contrast, SpatialNet local structure allows it to generate new shapes,
and its dynamic seperation allows better generalization. In the second dataset, we explore input size
invariance. We create a second testing data-set consisting 16-32 random circles and squares and input
images of size 168x168x3 (the density of objects per area is conserved). On this dataset, we obtained
a MSE of 0.0042 compared to ConvLSTM of 0.0060, which is comparable to the MSE on the original
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SpatialNet

RCNet

ConvLSTM
®

4
Label Frames| Predicted Frames

Figure 4: Predictions of SpatialNet, RCNet on test data-set with objects twice as small and with twice the
movement speed as trained on. All shown frames are one step predictions. SpatialNet is able to accurately
generalize to smaller, faster objects while RCNet is unable to generate the shapes of the smaller objects and
suffers from background degradation and ConvLSTM is unable to maintain shapes and dynamics.

GT

SpatialNet

Label Frames Predicted Frames

Figure 5: Predictions of SpatialNet on input images of 168 x 168 when SpatialNet was trained on 84 x 84
images. Prediction shown are 1 step future predictions. SpatialNet is able to maintain physical consistency in at
large input sizes.

test dataset of 0.0024, showing that the spatial memories local structure allows to easily generalize to
different input image sizes. We show qualitative plots of both datasets in the supplementary.

B.5 PHYSICAL PARAMETER PREDICTION

We trained a 2 layer classification model on top of hidden state representations produced by Spa-
tialNet/ConvLSTM to predict one of 3 values for elasticity/drag - low, medium or high on set of
physical videos. Only the classification layers are trained, while the rest of the parameters are kept
fixed (except for full train).
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Model Drag Elasticity

SpatialNet (random init) 35.8 43.8
SpatialNet (PT on Atari Pong)  35.0 33.6
ConvLSTM (PT on PhysVideos) 57.2 53.2
SpatialNet (PT on PhysVideos)  69.8 56.9

SpatialNet (full train) 78.5 67.8

Table 5: Accuracies on predicting drag and elasticity from video frames (PT = pre-training)

From Table[5] we see that randomly initialized parameters or SpatialNet trained on Atari Pong dont
do well, indicating that they dont capture physics. SpatialNet trained on PhysVideos gets an accuracy
of around 69% on drag prediction (close to the fully trained model accuracy of 78%). This shows
that the pre-training indeed helps the model acquire priors over physical dynamics. Further, the low
numbers of the model trained on Atari Pong indicate that task-specific frame prediction may not
generalize well.

C PHYSWORLD

All environments consisting of around 10 randomly moving boxes and circles as well as up to three
internal impassable walls. We provide a description of the three games environments in PhysWorld:

PhysGoal: In this environment, an agent has to navigate to a large red goal. Each successful
navigation (+1 reward) respawns the red goal at a random location while collision with balls or boxes
terminates the episode (-1 reward).

PhysForage: Here, an agent has to collect moving balls while avoiding moving boxes. Each collected
ball (+1 reward) will randomly respawn at a new location with a new velocity. Collision with boxes
lead to termination of episode (-1 reward).

PhysShooter: In PhysShooter, the agent is stationary and has to choose an angle to shoot bullets.
Each bullet travels through the environment until it hits a square (+1 reward) or circle (-1 reward) or
leaves the screen. If a moving ball or box hits the agent (-1 reward), the episode is terminated. After
firing a bullet, the agent cannot fire again until the bullet disappears.

Examples of agents playing the PhysWorld environments are given in Figure [6]

C.1 PLOTS OF DYNAMICS LEARNING

We show plots of dynamics learning with or without a learned physics prior in Figure[§]
C.2  SPATIALNET PREDICTIONS

Figure [/| shows the qualitative next 3 frame predictions of SpatialNet on each of the different
PhysWorld environment with the first frame being the current observation. In PhysGoal, SpatialNet
is able to infer the movement of the obstacles, the dark blue agent, and the red goal after agent
collection. In PhysGather, SpatialNet is able to infer movement of obstacles as well as the gather of a
circle. In PhysShooter, SpatialNet is able to anticipate a collision of the bullet with a moving obstacle
and further infer the shooting of a green bullet by the agent.

C.3 VISUALIZATION OF SPATIAL MEMORY

We provide visualization of the values of spatial memory hidden state while predicting future frames.
We visualize the values of spatial memory on PhysVideos, PhysGoal and the Atari environment
Demon Attack in Figure[9] To visualize, we take the mean across the channels of each grid pixel in
the spatial memory hidden state. We find strong correspondence between high activation regions in
the spatial memory and dynamic objects in the associated ground label of the dynamic objects. We
further find that static background, such as walls in the input, goals and platforms appear to be passed
along in input features.

D ADDITIONAL ATARI EXPERIMENTS

We provide plots of training curves on all Atari environments in Figure[I0]on provide on quantitative
numbers in Figure[6

11
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PhysGoal

PhysForage

PhysShooter

Phys3DShooter

Figure 6: Example agent game-play in each of the PhysWorld environments. In PhysGoal the dark blue agent
attempts to reach a red goal while avoiding moving objects. In PhysForage the dark blue agent attempts to gather
light blue circles while avoiding squares. In PhysShooter, the dark blue agent is immobile and chooses to fire
bullet a green bullet at squares while avoiding circles. In Phys3DShooter, the grey fires turqoise bullets at purple
spheres while avoiding blue spheres.

Figure 7: Future image prediction on PhysGoal (left) and PhysShooter (right). First image is current observation,
the next three are predicted. SpatialNet is able to predict future dynamics of boxes and balls and anticipate agent
movement (PhysGoal) and agent shooting (PhysShooter).

Predictions on Atari We also investigate the benefits (in terms of MSE) of initializing SpatialNet
pretrained on the physics dataset compared to training with scratch in Figure[/| We evaluate the
MSE error at 1 million frames and find that initializing with the physics dataset provides a 12.9%
decrease in MSE error. We find that pretraining helps on 7 of the 10 Atari environments, with
the most negatively impacted environment being Enduro, a 3D racecar environment in which the
environmental prior encoded by the physics dataset may be detrimental. More significant gains in
transfer may be achievable by using a large online database of 2D YouTube videos which cover even
more of diversity of games.

SpatialNet Predictions We further visualize qualitative results on SpatialNet on training Atari in
Figure[T1] In general, across the Atari Suite, we found that SpatialNet is able to accurately model
both the environment and agents behavior. In the figure, we seed that SpatialNet is able to accurately
predict agent movement and ice block movement in Frostbite. On DemonAttack, SpatialNet is able to
infer the falling of bullets. On Asteroid, SpatialNet is able to infer the movement of asteroids. Finally,
on FishingDerby, SpatialNet is able to the right player capturing a fish and also predict that the left
player is likely to catch a fish (indicated by the blurriness of the rod). We note that any blurriness

12
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MSE Loss Predictions on PhysShooter
0.030 1

Scratch Initialization

PhysVideos Initialization
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Figure 8: Learning curves demonstrating the impact of using priors learned from PhysVideos on PhysShooter.
We observe significantly faster convergence to lower MSE.

Spatial Memory -

State »
Ground o %o
Truth Label ° o

Figure 9: Visualization of SpatialNet hidden state on PhysVideos (left), PhysGoal (middle) and Atari DemonAt-
tack (right). Hidden state has high activations for moving objects while background objects such as walls (left),
red goals (middle) and platforms (right) are not attended to as much.

in predicted output may in fact even be beneficial to the policy, since policy can learn to interpret
the input. We provide training curves and additional analysis on effects of physics transfer on these
environments in the supplementary material.

E TRANSFER AND GENERALIZATION

We provide a table showing transfer performance onto PhysShooter from other environments in Table
[l We find that initializing SpatialNet with random parameters does not perform very well, but using
a pretrained SpatialNet pretrained on PhysVideos provides better performance. We observe that
transferring a SpatialNet model fine-tuned on a different task like PhysForage/PhysGoal results in
even greater performance improvements. Interestingly, we note that transferring just the dynamics
model in IPA results in a larger performance gains than transferring both model and policy. For
instance, transferring the model from PhysForage results in a score of 53.7 while transferring both
model+policy gets a lower score of 40.4. This provides further evidence that decoupling model
learning from policy learning allows for better generalization. We provide a quantitative numbers in
the supplement.
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Figure 10: Plots of policy performance trained with either PPO or IPA on all Atari environments on 5 different
seeds. IPA sometimes leads to low learning early on the training due to rapid change of 3 predicted future frames.
However, later on in training in many different environments, IPA provides performance gains by giving policies
future trajectories. IPA provides improvements on 31 of 49 evaluated Atari environments
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Environment PPO D2A
Alien 1668.6 + 224.3 1485.5 + 281.0
Amidar 8559 +98.6 725.5 £135.0
Assault 2939.2 £ 153.2 2968.4 + 124.0
Asterix 2920.8 +287.3 2334.0 £ 184.0
Asteroids 1321.0 &+ 233.5 20984 +102.0
Atlantis 323205.4 +277643.2 289369.8 £ 239469.0
BankHeist 3104 +44.0 334.3 +£29.0
BattleZone 26828.0 + 8472.0 16526.7 £+ 6986.0
BeamRider 553.1 £ 284 1630.3 £ 400.0
Bowling 46.6 £5.2 64.3 + 13.0
Boxing 543 +£25 8.9 £20.0
Breakout 197+ 0.9 234 +£1.0
Centipede 6043.7 £+ 990.6 6032.5 £ 199.0
ChopperCommand 65494 +1779.1 4112.0 £ 1024.0
CrazyClimber 36893.2 £ 463.9 38499.0 + 1221.0
DemonAttack 55109 £ 412.5 6793.6 £ 558.0
DoubleDunk -40+£05 -3.8 £0.0
Enduro 376.7 £ 10.5 398.6 +23.0
FishingDerby 6.7 £10.1 9.3 +£3.0
Freeway 292 £3.6 312 £1.0
Frostbite 1342.5 £ 2154.5 1701.1 +2485.0
Gopher 904.0 +=42.3 941.1 £+ 56.0
Gravitar 5749 £ 36.2 627.2 +25.0
IceHockey -59 +£03 -6.1£0.0
Jamesbond 598.9 +112.1 4543 £34.0
Kangaroo 2842.4 +2461.2 1373.0 £ 445.0
Krull 5178.9 £ 205.1 5219.3 +129.0
KungFuMaster 13831.6 + 4483.6 13358.5 +4352.0
MontezumaRevenge 0.0£0.0 129.7 +£122.0
MsPacman 1990.1 £ 2279 2097.3 +259.0
NameThisGame 5406.4 +278.0 5131.3 £427.0
Pitfall -0.1 £0.3 0.0 £0.0
Pong 6.6 +14.1 22+£13.0
PrivateEye 95.6 +54 99.6 £ 0.0
Qbert 6981.0 + 548.0 6331.4 £769.0
Riverraid 3411.0 £201.9 3612.4 + 130.0
RoadRunner 19329.6 + 8472.6 20041.8 + 4906.0
Robotank 119+ 1.8 149 +3.0
Seaquest 1426.0 +43.5 1408.7 £51.0
Spacelnvaders 902.4 4+ 66.0 1132.6 + 101.0
StarGunner 3450.0 £ 801.5 5778.5 + 1584.0
Tennis -6.5+2.1 3.8 £1.0
TimePilot 4281.8 £+ 126.6 4580.0 +314.0
Tutankham 128.5 £ 123 118.2 +35.0
UpNDown 15872.3 £3995.3 16913.7 + 6344.0
Venture 930.2 + 137.9 946.7 + 167.0
VideoPinball 18878.1 £ 1251.7 13981.2 £ 2136.0
WizardOfWor 3835.6 £ 404.7 4629.8 + 662.0
Zaxxon 7197.4 £ 220.6 7271.0 +264.0

Table 6: Scores obtained on Stochastic Atari Environments with sticky actions (actions repeated with 50%
probability at each step). Scores are average performance over 100 episodes after 10M training frames, over 5
different random seeds. IPA helps in 31 out of 49 evaluated Atari games.
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Environment MSEPD MSE DN Percent Advantage

Assault 0.00477 0.00522 9.4%
Asteroids 0.002506 0.002518 4.7%
Breakout 0.000417 0.000423 1.4%
DemonAttack  0.00433 0.00562 29.8%
Enduro 0.00576 0.00411 -28.7%
FishingDerby ~ 0.00183 0.00192 4.9%
Frostbite 0.000965  0.00107 10.8%
IceHockey 0.000614 0.0013 111.7%
Pong 0.00636 0.00584 -8.2%
Tennis 0.00142 0.00132 -7.1%

Table 7: MSE on Stochastic Atari Environments (a action is repeated with a geometric distribution with p=0.5)
at 1 million training frames. MSE PD is trained with a model from physics dataset while MSE DN is trained
with a model from scratch. We evaluate percentage advantage for initializing with a physics dataset as compared
to from scratch. We average 12.9% decrease in MSE error using a initialization from pretraining on a physics
dataset. The most negative environment, Enduro, involves a 3D landspace which initializing from model trained
on a physics data set may be detrimental.

Figure 11: Visualization of model future state prediction on 4 games in Atari (Frostbite - upper left, DemonAt-
tack - lower left, Asteroids - upper right, FishingDerby - lower right). SpatialNet is able to predict falling
of bullets, the catching of fish, movement of asteroids, and the movement of tiles/future agent movement in
different environments. First frame visualized is ground truth observation, next 3 frames are model future frame
predictions.

Source env  What is transferred? Reward MSE

None PPO 23.2 -

None IPA 3542  0.00578

PhysVideos IPA 4227  0.00554
PPO 25.42 -

Fixed SpatialNet 26.30

PhysGoal g\ ctune SpatialNet ~ 42.83 000540
Model + Policy 42.44  0.00540

PPO 24.47 -

PhysForage Fixed SpatialNet 30.30 -
y € Finetune SpatialNet ~ 53.66  0.00533

Model + Policy 40.40  0.00533

Table 8: Effects of model initialization and transfer on training policies in PhysShooter. Topmost section shows
baseline PPO, random initialization of dynamics for IPA, and pre-trained IPA using PhysVideos. The bottom
two sections demonstrate results while transferring different models from two other games — direct policy (PPO),
transfer dynamics model and fix it (Fixed SpatialNet), transfer dynamics and finetune (Finetune SpatialNet),
and transfer both dynamics+policy and finetune (Model+Policy). IPA allows decoupling of policy transfer from
model transfer, allowing better transfer in cases of environment similarity but task dissimilarity. Scores obtained
on the PhysWorld environments after training for 10M frames and evaluated by taking average rewards of the
last 100 training episodes.
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