
Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

RAPID TRIAL-AND-ERROR LEARNING IN PHYSICAL
PROBLEM SOLVING

Kelsey R. Allen,* Kevin A. Smith,* & Joshua B. Tenenbaum
{krallen, k2smith, jbt}@mit.edu
Brain and Cognitive Sciences, Massachusetts Institute of Technology
∗These authors contributed equally to the work

ABSTRACT

We introduce a new problem solving paradigm: solving physical puzzles by plac-
ing tool-like objects in a scene. The puzzles are designed to explicitly evoke dif-
ferent physical concepts such as support, blocking, tipping, and launching, and
are typically solved by people in a handful of trials. We study human participants’
problem solving strategies, including what they try first, how they update their
actions based on failed attempts, and how many attempts they eventually take to
solve the puzzles. We show that a model which incorporates object-based priors
to generate hypotheses, mental simulation to test hypotheses, and a system to im-
prove sampling based on experiences across simulations and real-world trials, and
show that all three components are needed to explain human performance. We
additionally show that a deep reinforcement learning agent, which treats the task
as a contextual bandit, fails to learn strategies across randomly generated levels.

Imagine you are going camping. While trying to set up the tent, you realize you have the stakes you
must pound into the ground, but no hammer. You might search your environment for a replacement
– and out of all possible objects you could use, it is more likely that you would look for a rock
rather than a branch or backpack. If you fail to drive the stake in with that rock, you might search
for a more suitable (perhaps heavier) rock, or try a slightly different angle of impact. Solving this
problem requires sophisticated planning and learning machinery. We do not choose initial objects at
random, but instead choose a rock because we know how we could use it to hit the stake (Osiurak &
Badets, 2016). If our initial plan fails, we use information from that failure to guide future search.

Reinforcement learning has had extraordinary success explaining how people perform trial-and-
error, incremental learning (Sutton, 1992; Whitehead & Ballard, 1991). However, traditional re-
inforcement learning starts from unbiased, nearly random behavior and, because it assumes little
world knowledge, generally requires many attempts to succeed at a task (Sutton, 1992). This is in
contrast to the rapid progress (in one or a few trials) based on rich inferences that humans often
demonstrate.

We therefore focus on problems that require rich prior knowledge of the world dynamics, and where
failed attempts provide useful feedback to intelligently update proposed solutions. As an example
class of these problems, we introduce a “physics game” where people are asked to place objects into
a scene to accomplish different objectives. These scenes unfold according to physical dynamics,
and so people have the ability to predict the outcome of their actions, albeit with some uncertainty
and bias (Battaglia et al., 2013; Smith & Vul, 2013). But because searching this space of possible
actions is still difficult, and simulations are imperfect, feedback from failed observations can help
people plan future actions.

To explain people’s solutions, we propose the “Sample, Simulate, Remember” (SSR) model that
includes object-based priors, a noisy physical simulation engine to propose actions, and a Bayesian
optimization procedure for more efficient exploration. We show that this model solves our physics
puzzles similarly to people, and that each of the three components contributes to explaining human
data. We further find that solution strategies are not easily learnable from simple action-outcome
pairings, and instead require knowledge of the dynamics of the world to rapidly develop.

1 EXPERIMENT

1



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

Figure 1: Diagram of a trial. (A) Participants at-
tempt to get a red object into the green goal using
one of the three tools on the right. (B) Participants
choose a tool and where to place it. (C) Upon
placing the tool, physics is turned on and partic-
ipants see an animation of the scene unfolding. If
they fail, they can reset the world and try again.

In this experiment, 94 participants played a
game in which they were given a goal state
(e.g., “get the red ball into the green goal”; see
Fig. 1) that they had to achieve by placing one
of three ‘tools’ into the scene. If their attempt
failed, they could reset the level and try again.
Solving levels in this game required using the
tools in an indirect manner such as dropping
them on an object to launch it or putting the tool
underneath an object to support it. Because par-
ticipants could only take one action per attempt,

finding solutions required understanding how their actions could cause changes in the scene in the
future when they were no longer allowed to intervene.

We constructed 20 levels to investigate a range of physical concepts such as ‘launching’ or ‘catapult-
ing’ a ball, ‘supporting’ a table for an object to roll across, or ‘preventing’ an object from blocking
the goal (see Fig. ??). Of these 20 levels, 12 were constructed in 6 pairs, with small variations in the
goals or objects in the scene so that we could test whether subtle differences in stimuli would lead to
observable differences in behavior. Participants were asked to solve 14 problems in a random order:
8 unmatched, and one each of the 6 matched pairs.

Participants were given two minutes to solve each problem – if they solved it they could move onto
the next level immediately. Otherwise, they could choose to move on any time after two minutes
had passed. Within each trial, we recorded all attempted actions: which tool was used, where it
was placed, and the clock time when it was placed since the start of the trial. Selected first and last
actions for four of the levels can be seen in Fig. 5.

While participants improved in solution rate over the course of the experiment (76% solution rate on
the first three trials to 86% on the last three; χ2(1) = 9.7, p = 0.002), there was no evidence that they
used fewer attempts later in the experiment (χ2(1) = 2.0, p = 0.15); this suggests that participants
were not learning about the game dynamics in a way that they could leverage for more efficient
solutions. Instead, we propose that rapid trial-and-error learning relies on pre-existing physical
knowledge and makes use of heuristics to perform efficient sampling based on observations. This
is in contrast to model based reinforcement learning, which would show improvement based on
learning an improved model of the underlying dynamics.

Figure 2: The levels used in the experiment. Participants could choose one of the three tools (to the
right of each level) to place in the scene to get a red object into the green goal area. Levels denoted
with A/B labels are matched pairs. See https://bit.ly/2G5ZKgw for example videos.

2 THE “SAMPLE, SIMULATE, REMEMBER” MODEL

To account for this human behavior, we propose a model incorporating object-based priors
(Sample), a noisy simulation engine (Simulate), and a Bayesian optimization procedure for gen-
erating diverse action proposals based on “internal” and “external” observations (Remember). We
show that each part is necessary to explain human behavior through ablation experiments.

Sample: object-based prior In line with other work on physical problem solving showing that
object-oriented and relational priors are important (Hamrick et al., 2018), we incorporate an object-
based prior for sampling actions. Since all tools in the game were designed to be unfamiliar to
participants, we place a uniform prior over the three tool choices. The position of the tool was
sampled according to the factored action distribution ob ject ∼Multinomial({ 1

nob j
|i ∈ [0, ...,nob j]}),

2

https://bit.ly/2G5ZKgw


Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

x,y∼N ([ob jectx,ob jecty], [σx,σy]) where nob j is the number of movable objects in the scene, and
ob ject is the sampled object. This encourages the model to sample actions that are likely to have an
effect on the scene by changing the trajectory of movable objects.

Figure 3: Sample, Simulate, Remember
(SSR): a model incorporating an object-
based prior, a simulation engine, and
a Bayesian Optimization procedure for
suggesting new proposals based on ob-
servations “in the mind” and “in the
world”.

Simulate: a noisy simulation engine An “intuitive
physics engine” is used to evaluate proposed actions as
being likely to succeed or not. Humans characteristi-
cally have noisy predictions of how collisions will re-
solve (Smith & Vul, 2013). We therefore incorporate two
sources of collision noise into our model: collision elas-
ticity, and collision direction.1 In order to decide if a pro-
posed action is worth attempting in the real world, it is
stochastically simulated five times to form a set of hy-
potheses about how that action might affect the world.
For each hypothesis, the minimum distance between the
goal area and one of the objects that must get into that area
is recorded; these values are averaged across the simula-
tions and saved to memory. Since low values are indica-
tive of actions that almost achieve the goal, if the average
is below a threshold ε, the model takes that action “in the
world.” If the model considers more than T different ac-

tion proposals without acting, it takes the best action it has imagined so far.

Remember: Bayesian Optimization for efficient sampling We implement memory via a Gaus-
sian Process (GP) that maps actions to estimated rewards (minimum distance between the goal and
relevant objects, scaled by this distance when no action is taken) in order to guide the internal
sampling procedure towards promising regions and away from actions which are likely to be unsuc-
cessful. The model samples diverse but effective action proposals from this memory using Bayesian
Optimization with the Expected Improvement acquisition function (Jones et al., 1998). This ac-
quisition function balances taking actions that are near ones already known to be promising, and
exploring areas with high uncertainty. This memory incorporates both simulations “in the mind”
and observations “in the world” to guide future proposals from all information.

The SSR model will continue to propose actions until one is successful; however, participants could
‘fail’ a level if they did not complete it within two minutes. We therefore allowed the model to take
10 actions before considering it a failed trial, in line with the number of actions participants used on
unsuccessful trials (mean: 9.6, median: 10).

2.1 ALTERNATE MODELS

We propose that “trial-and-error” problem solving requires (1) an object-based prior, (2) a simulation
engine, and (3) memory with generalization. We therefore considered ablations of the SSR model
that lack these various pieces to determine their relative contributions. We find that removing any of
these three modules negatively affects the model’s performance.

The only tuned parameters were: ε, the threshold for acting, σx and σy, the standard deviations
for the prior, and the collision noise parameters. The proposal threshold T was always fixed to 5.
These were fit to maximize the likelihood of participants’ first placements under the full model; this
likelihood was relatively insensitive to reasonable choices for all other parameters.

2.2 RESULTS

Our main comparison between these models is whether they solve each level as quickly and as often
as our participants did. We therefore compare the average number of attempts participants took on
each level with the average model attempts using root mean squared error (RMSE) to capture both
bias and variability in these comparisons. We additionally compare the model’s solution rate to the
human solution rate across all trials.

1Sensitivity analyses demonstrate that only these two sources of noise make a significant difference to the
model fits.

3



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

(a) Comparison of average
number of human participants’
attempts for each level with av-
erage number of attempts for
the full SSR model.

(b) The full SSR model’s aver-
age solution rate (accuracy) for
each trial compared to human
solution rates. There is a high
correlation between model and
human accuracy: r = 0.75.

Model Avg. Pl RMSEPl rAcc
Human 4.48 - -

Full 4.88 2.17 0.75
P+S 4.86 2.35 0.59

P+M 6.46 2.74 0.65
S+M 5.83 2.81 0.70
Prior 8.2 4.6 0.60

Guess 8.85 4.87 0.67

(c) Ablation experiments for average place-
ments, RMSE of placements vs. people, and
correlation between model and human accu-
racy. Model components are denoted by let-
ters: P indicates prior, S indicates simula-
tion, and M indicates memory. Bold num-
bers indicate the best models on each metric
that cannot be distinguished based on 95%
bootstrapped confidence intervals.

Figure 4: Model comparisons

Figure 5: Distribution of pre-
dicted model actions (back-
ground) versus human actions
(points) on the first attempts
of the level (left) and the at-
tempt used to solve the level
(right) for a selection of four
levels.

The SSR model explains the patterns of human behavior across the
different levels well. It uses a similar number of attempts on each
level as people do (r = 0.66; 95% CI = [0.56,0.72]; mean empiri-
cal attempts across all levels: 4.48, mean model attempts: 4.88; see
Fig. 4a). It also solves each of the levels at similar rates to partici-
pants (r = 0.75; 95% CI = [0.65,0.80]; see Fig. 4b).

As can be seen in Table 4c, eliminating either the object-based prior
or the physics simulator causes a large decrease in performance,
with the ablated models typically requiring many more attempts to
solve levels because they are either searching in the wrong area
of the action space (no prior), or attempting actions that have no
chance of being successful (no physics engine). However, even
the ‘Prior + Simulation’ model does somewhat worse at explaining
the pattern of attempts and accuracy across levels, suggesting that
the memory module helps guide the search in a more human-like
fashion. Specifically, when the memory is ablated, correlations for
the overall accuracy between the model and human participants de-
creases. This suggests that the memory is improving the efficiency
and the diversity of the search.

To investigate whether the model is solving these levels in similar
ways to people, we can visualize where both the model and partic-
ipants decide to try their first action, and what sorts of actions they
use to eventually solve the level – see Fig. 5. In general, both peo-
ple and the model will begin with a variety of plausible actions (e.g., Towers (B) and Catapult). In
some cases, both will attempt initial actions that have very little impact on the scene (e.g., Prevention
(B)); this could be because people cannot think of any useful actions and so decide to try something,
similar to how the model can exceed its action threshold T . However, in some cases, the model’s
initial predictions diverge from people, and this leads to a different pattern of search and solutions.
For instance, in Falling (A), the model quickly finds that placing an object under the container will
reliably tip the ball onto the ground, but people are biased to drop an object from above. Because
of this, the model always solves the level with an object below, whereas a proportion of participants
find a way to flip the container from above; this discrepancy can also be seen in the comparison of
number of attempts before the solution, where the model finds a solution quickly, while people take
longer (Fig. 4a).

2.2.1 LEARNING STRATEGIES WITH DEEP REINFORCEMENT LEARNING

While the SSR model assumes access to a physical simulator in order to update its actions within a
level, we also investigated whether winning strategies could be learned in a “model-free” way using

4



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

standard deep reinforcement learning methods. To study this, we created level templates, which
could be used to generate random levels for each of five level types: “Basic,” “Catapult,” “Shafts,”
“Table (A),” and “Table (B)” (see the Appendix and Fig. 2).

Figure 6: Performance of
deep reinforcement learning
approach PPO on set of train-
ing levels from specific level
type.

These levels were associated with tools that were generated ran-
domly by resizing and mirroring tools used in the human experi-
ments. All levels were checked to ensure that they could be solved
using a prototypical strategy (e.g., ‘drop an object from above the
ball’) using at least one of the tools. We generated 1000 different
random levels for each of level types.

We trained an agent using Proximal Policy Optimization (PPO;
Schulman et al., 2017) to learn high reward strategies within a level
type. We used the Atari architecture from Schulman et al. (2017),
giving the scene and tool images as input. The reward was scaled
by a factor of 5 such that a reward of -10 indicated an illegal place-
ment, a reward of -5 corresponded to having no impact on the scene,
a reward of 0 indicated success, and rewards between -5 and 0 in-
dicated actions that would move the target object closer to the goal.
The training curves for the different level types are shown in Fig.6.
While PPO learns to take legal actions in each level type, it does not

learn a good, generalizable strategy for that level type even after many observations.

3 DISCUSSION

We have shown that a model incorporating an object-based prior, simulation engine, and efficient
sampling procedure captures how participants’ attempted strategies evolve from start to finish (see
Fig. 5), and the overall difficulty of the different levels. We find that all three components of this
model independently help to explain human problem solving. The prior helps the SSR model focus
on areas of the action space that are likely to make a difference in the problem, just like people
do. The noisy simulation engine is necessary to filter out poor action proposals that people do
not choose. The Bayesian Optimization-based memory allows the model to efficiently search the
hypothesis space in a more human-like way.

Each of these three components, an object-based prior, a noisy simulation engine, and memory, can
be interpreted in light of classic notions of how animals and humans use objects to accomplish goals.

First, affordance-based reasoning has a long history in cognitive science (Gibson, 1979). Here we
assumed a very simple notion of affordances through an object-based prior, but without any of the
shape or context cues to direct how an object might be used. However, affordances are typically
thought to be specific to objects and how they might be used, suggesting that more complex priors
as joint probability distributions over tools, object types, shapes, and relational uses of that tool
might better describe how people initialize their search.

Second, we assumed a noisy physics engine as the simulator in this model, which requires plan-
ning over the full continuous action space. However, work in robotics has developed approaches
to planning in more abstract event spaces (Toussaint et al., 2018; Kaelbling et al., 2007) that can
be grounded to continuous physical states. We believe such mechanisms could provide a way of
bridging more qualitative physical simulation (Forbus, 1988) with the physics engines that simulate
over continuous spaces used here.

Third, the SSR model only learns within levels, not across them. This was a reasonable assump-
tion because object properties (such as density, friction, and elasticity) were identical across levels.
To support this assumption, we find little learning across levels in our participants. But in a more
complex version of this game where physical properties might vary across levels, memory and gen-
eralization will be important not just for learning good actions, but also for learning the changing
physical properties.

Overall, we believe this domain will allow for further investigations into the underlying physical
representations used for complex object-based planning and manipulation, and how these represen-
tations are updated efficiently based on interactions with the world.

5



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

REFERENCES

Peter Battaglia, Jessica Hamrick, and Joshua B Tenenbaum. Simulation as an engine of physical
scene understanding. Proceedings of the National Academy of Sciences, 110(45):18327–18332,
2013.

Kenneth D Forbus. Qualitative physics: Past, present, and future. In Exploring artificial intelligence,
pp. 239–296. Elsevier, 1988.

James J Gibson. The Ecological Approach to Visual Perception. Houghton Mifflin Co., 1979.

Jessica B Hamrick, Kelsey R Allen, Victor Bapst, Tina Zhu, Kevin R McKee, Joshua B Tenen-
baum, and Peter W Battaglia. Relational inductive bias for physical construction in humans and
machines. arXiv preprint arXiv:1806.01203, 2018.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

L. P. Kaelbling, H. M. Pasula, and L. S. Zettlemoyer. Learning Symbolic Models of Stochastic
Domains. Journal of Artificial Intelligence Research, 29:309–352, July 2007. ISSN 1076-9757.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://github.
com/ikostrikov/pytorch-a2c-ppo-acktr, 2018.

François Osiurak and Arnaud Badets. Tool use and affordance: Manipulation-based versus
reasoning-based approaches. Psychological review, 123(5):534, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Kevin A Smith and Edward Vul. Sources of uncertainty in intuitive physics. Topics in Cognitive
Science, 5(1):185–199, 2013.

Richard S Sutton. Reinforcement learning architectures. 1992.

Marc Toussaint, Kelsey Allen, Kevin Smith, and Joshua B Tenenbaum. Differentiable physics and
stable modes for tool-use and manipulation planning. In Robotics: Science & Systems, 2018.

Steven D Whitehead and Dana H Ballard. Learning to perceive and act by trial and error. Machine
Learning, 7(1):45–83, 1991.

4 APPENDIX

4.1 REINFORCEMENT LEARNING MODEL DETAILS

We trained a PPO agent based on the library available from Kostrikov (2018). We have four images
for the network: one for each of the tools, and one of the environment. We run the image of the
environment through the network used by Schulman et al. (2017) for playing Atari. We use a smaller
convolutional network with the same number of layers for each of the tools. The network weights
are shared across tools. We perform late fusion on the feature vectors output by the environment
and tool networks, and then use two fully connected layers of 100 units each to predict a mean
position for placement of a tool. We additionally predict categorical weights on which tool to use
with a separate fully connected layer. While we considered alternative parameterizations of the
action distribution, this did not appear to affect the results significantly.

The agent was trained with a learning rate of 1e-5, and PPO batch size of 128. We found that
the training was sensitive to these hyperparameter choices, with larger learning rates leading to
exploding gradients.

The reward was shaped in the same way as the bayesian optimization based procedure (minimal
distance to the goal, divided by this distance if no action was taken). This was multiplied by a factor
of 5 since it appeared to improve learning efficiency.

6

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr


Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

4.2 RANDOM LEVEL GENERATION FOR PPO

Because PPO must learn strategies from scratch, including how to represent objects, we constructed
a training set to determine whether the PPO model could learn within a specific level type. To
do so, we selected six levels from those we tested participants on, and built custom random levels
generators for each of those levels. These generators allowed properties such as the size, position,
or shape of objects to vary in ways that were hand-designed to allow for similar strategies to solve
all levels of each type (see Fig. 2a for examples of the randomly generated levels).

Figure 7: Randomly generated level screens on the top, and randomly generated tools on the bottom.
Each row represents a different trial template. All levels are solvable with at least one of the tools
available on that level.

7


	Experiment
	The ``Sample, Simulate, Remember'' model
	Alternate models
	Results
	Learning strategies with deep reinforcement learning


	Discussion
	Appendix
	Reinforcement learning model details
	Random level generation for PPO


