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ABSTRACT

In sequential modelling, exponential smoothing is one of the most widely used
techniques to maintain temporal consistency in estimates. In this work, we propose
Recurrent Learning, a method that estimates the value function in reinforcement
learning using exponential smoothing along the trajectory. We establish its asymp-
totic convergence properties under some smoothness assumption on the reward.
The proposed algorithm yields a natural way to learn a state dependent emphasis
function that selectively learns to emphasize or ignore states based on trajectory
information. We demonstrate the potential for this selective updating on a partially
observable domain and several continuous control tasks.

1 INTRODUCTION

Reinforcement Learning is a mathematical framework designed to model sequential decision making.
They are widely applied on a range of tasks but they suffer from several issues. In particular, we
describe two issues that Recurrent Learning attempts to mitigate. The first one considers the variance
of the value estimates along the trajectory. Most algorithms in Reinforcement Learning estimate the
value at every time step without necessarily explicitly enforcing temporal coherence nor considering
previous estimates. This can lead to erratic and temporally inconsistent behaviors, particularly in
tabular and discrete settings. The second issue considers the limited capacity of the brain to process
information and make decision. Bounded rationality argues that human brain has a limited capacity
to learn and can’t store all the information. In this work we argue that the capacity to ignore or
emphasize chosen state is a key component for the success of decision making algorithms.
Exponential smoothing (1) is one of the most widely used technique to reduce the variance of point
estimates using previous observations. In time series data it is used to approximate the mean of a
stream of data. This kind of smoothing has various names (2; 3) depending on the field it is used in.
Most quantities in reinforcement learning (Q values, state values, actions, etc) are estimated as point
estimate ignoring previous estimates from the trajectory. In this work, we use exponential smoothing
in reinforcement learning on the trajectory. In other words, we propose to smooth the estimate of the
present state using the estimates of past states. Intuitively, states that are temporally close to each
other should have similar value.
However, exponential averaging can be biased if a sharp change(non-stationarity), like falling off
a cliff, is encountered along the trajectory. To alleviate this issue a common technique used is to
set βt, the exponential smoothing factor, as a state or time dependent. It is possible to view LSTM
(4) and GRU (5) as several non-linear exponential smoothing functions. The key ingredient is the
gating mechanism(state dependent βt) that ignores the information allowing the cell to focus only on
important information. In this work we explore a new method that attempts to learn a state dependent
smoothing factor β. We show how it relates to existing methods and exploit similar properties such
as emphatic TD (6; 7). The contributions of the paper are as follows:

• Propose a new way to estimate value function in reinforcement learning by exploiting the
estimates along the trajectory.

∗Equal contribution
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• Provide asymptotic convergence guarantee in the tabular setting under some smoothness
assumption.
• Derive a learning rule for a state dependent β.
• Perform a set of experiments in tabular and continuous settings to evaluate its strengths and

weaknesses.

2 TECHNICAL BACKGROUND

A Markov Decision Process (MDP), as defined in (8), consists of a discrete set of states S , a transition
function P : S × A × S 7→ [0, 1], and a reward function r : S × A 7→ R. On each round t, the
learner observes current state st ∈ S and selects action at ∈ A, after which it receives reward
rt = r(st, at) and moves to a new state st+1 ∼ P(·|st, at). We define a stationary policy π as a
probability distribution over actions conditioned on states π : S ×A 7→ [0, 1], such that at ∼ π(·|st).
When performing policy evaluation, the goal is to find the optimal value function V π that estimates
the discounted expected return of policy π at a state s ∈ S , V π(s) = Eπ[

∑∞
t=0 γ

trt+1|s0 = s], with
discount factor γ ∈ [0, 1). In this paper we only consider policy evaluation and simplify the notation:
r(st) = r(st, at).

In practice V π is approximated using Monte Carlo rollouts (9) or TD methods (10). In reinforcement
learning the aim is to find a function Vθ : S→ R parametrized by θ that approximates V π. We can
fall back to the tabular setting by representing the states in a one hot vector form with θ ∈ R|S|. The
goal is to find a set of parameters θ that minimizes the squared loss:

L(θ) = E
π

[(V π − Vθ)2] (1)

which yields the following update by taking the derivative with respect to θ:

θt+1 = θt + α(V π(st)− Vθt(st))∇θtVθ(st) (2)

where α is a learning rate.

3 RECURRENT LEARNING IN REINFORCEMENT LEARNING

In this work, we propose to estimate the value function using the estimates along the trajectory. The
value of a state s at time step t is given by:

V βθ (st) = βtVθ(st) + (1− βt)(V βθ (st−1)) (3)

where V βθ is an exponential smoothing of Vθ. V βθ is a function parametrized by θ and β ∈ [0, 1]. We
consider β to be fixed for each state in this section and relax the assumption later. For a given set of
state dependant β(st) = βt, the goal is to find a set of parameters θ minimizing,

minθL(θ) = minθ E
π

[(V π − V βθ )2] (4)

In contrast to traditional methods that attempts to minimize Eq. 1 we explicitly enforce temporal
consistency by finding θ that minimizes Eq. 4. By taking the derivative with respect to Eq. 4 we
obtain the following update:

θ = θ + αδt∇θV βθ (st) (5)

where δt = V π(st)− V βθ (st). The gradients of V βθ can be expressed in a recursive form:

∇θV βθ (st) = βt∇θVθ + (1− βt)∇θV βθ (st−1) (6)

For computational reason, it is possible to approximate the gradient ∇θV βθ (st) using a recursive
eligibility trace:

et = βt∇θVθ(st) + (1− βt)et−1 (7)
This technique is computationally inexpensive compared to the recursive backpropogation as the
gradient from the past is accumulated. But this kind of an update is biased. This bias comes from
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the fact that the true gradient obtained by applying the chain rule at future step is different than the
trace if the parameters are updated at each time step. This aspect is well studied in (11) and (12). We
now present Recurrent Temporal Difference(RTD(0)) in Algorithm 1. The algorithm is referred to as
RTD(0) because we have a one step target. This algorithm is compatible with any targets such as
Monte Carlo, n-step and even a λ return. In fact, there exists an important relationship between λ
and β. β can choose to ignore a state if the past is different from the future. We could get a better
estimate of the future using λ returns when compared against one step methods. Hence, a need for
long horizon to learn accurate β. The convergence proof is presented in the appendix 6.1.

Algorithm 1 Recurrent Temporal Difference, RTD(0)

1: Input: π,β,γ,θ
2: Initialize: V βθ (s0) = Vθ(s0) and e0 = ∇θVθ(s0)

3: Output: θ
4: for all t do
5: Choose a ∼ π(st)

6: Take action a, observe r(st), st+1

7: V βθ (st) = βtVθ(st) + (1− βt)(V βθ (st−1))

8: et = βt∇θVθ(st) + (1− βt)et−1
9: δt = r(st) + γVθ(st+1)− V βθ (st)

10: θ = θ + αδtet
11: end for

In practice, V βθ (s0) is initialized with the value of the first state Vθ(s0). We can understand our
algorithm better when we intuitively interpret its effect in the extreme cases (β = {0, 1}). We
consider TD(0) in a tabular setting for simplicity. First, consider a state st where β(st) = 0. The
value of this state is frozen at the initialization point and is never updated. This is because the trace as
defined in Eq. (7) is et = et−1 making such a state ineligible for the update. The error received at this
state is used to update the previous states as per their eligibility in et−1. This means that for a state st
with β(st) = 1, Vθ(st) is updated at every time step t+ n until another state with β(st+n) = 1 is
encountered.

State dependent β: State dependent β are responsible for the success of several techniques. For
instance, the success of LSTM (4) can be attributed to the gating(state dependent smoothing) mech-
anism. In this section we consider βω where βt is estimated with a set of parameters ω. There is
a natural way to estimate β in our formulation minβ Eπ

∥∥∥V π − V βθ,ω∥∥∥
2
. In practice, this compares

the estimate Vθ(st) and V βθ,ω(st−1) to V π and gives more weight to the one that is closer among the
two. This differs from the greedy approach(13) to set λ as we don’t explicitly need to consider the
variance of the return.

Adjusting for the reward: In practice many environments in reinforcement learning have either
a constant negative reward or a constant positive reward at every time step. In order to account for
those rewards we propose an alternative formulation where V βθ accounts for the reward that was just
seen, V βθ (st) = βtVθ(st) + (1− βt)(V βθ (st−1)− rt−1). The decision on the choice of formulation
to use will depend on the environment considered.

4 EXPERIMENTS

We consider the simple chain MDP described in figure 1(a) to demonstrate our method. This MDP
has three chains connected together to form a Y. Each of the 3 chains (left of S1, right of S2, right of
S3) is made up of a sequence of states. The agent starts at S0 and navigates through the chain. At
the intersection, S1, there is a 0.5 probability to go top or bottom. The chain on the top has a reward
of +1 at the last state and the chain on the bottom has a reward of −1. Every other transition has a
reward of 0, unless specified otherwise.
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(a) Simple chain MDP. The dotted line
in the figure indicates multiple states in

between shown states.
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Figure 1: Toy MDP and POMDP performance

4.1 PARTIALLY OBSERVABLE SETTING

We explore the capacity of recurrent learning to solve a partially observable task. In particular, we
consider the case where some states are aliased (share a common representation). The representation
of the state following S4 and S5 in figure 1 (a) is aliased. The goal of this environment is to correctly
estimate the value of the aliased state V π(S4) = 0.81, V π(S5) = −0.81(due to the discounting and
the length of each chain being 5). When TD(λ) is used to estimate the values for these states, the
values of states S4 and S5 is close to 0 as the reward at the end of the chain is +1 and −1. However,
when learning β, recurrent learning achieve almost no error in the estimate of the aliased state as
illustrated in figure 1 (b). To understand this result the first thing to realize is that β = 0 on the aliased
state as the previous values along the trajectory are a better estimate of the future along the same
chain compared to the actual estimate of the aliased state. As β → 0, V βθ (S4) and V βθ (S5) tends to
rely on the previous estimate V (S2) and V (S3) which are accurate. We see that learning to ignore
certain states can sometimes be enough to solve correctly an aliased tasks in contrast to a traditional
POMDP method that would attempt to infer the belief state. The results displayed in figure 1(b) are
averaged over 20 random seeds. The learning rate used is 0.05, γ = 0.9 and λ = 0.9.

4.2 DEEP REINFORCEMENT LEARNING

Phase 1: high β Phase 2: low β Phase 3: high β Phase 4: low β Phase 1: high β

Figure 2: Visual illustration of the cyclical behavior of β on Hopper

In this experiment, we modify the critic of Proximal Policy Optimization (PPO) (14) to use recurrent
learning. We modify the critic to estimate the value function parametrized by θ using recurrent
learning. We add a separate network parametrized by ω (same architecture as PPO) to learn a
state dependant β. The loss for learning β is minβ,ω Eπ(V λθ − V

β
θ )2) where the target V λθ is the

generalized advantage function (15). Using an automatic differentiation library (Pytorch (16)) we
differentiate the loss through the modified estimate to learn the θ and ω. The hyperparameters of PPO
are not modified. Due to the batch updates in PPO, obtaining the trajectory information to create
the computational graph can be costly. As a result, we cut the backpropagation after N timesteps
in a similar manner to truncated backpropagation through time (12). The learning rate for the β
network, L1 regularization coefficient of β and number of backpropagation steps were obtained using
hyperparameter search. We used a truncated backprop of N = 5 in our experiments as we found
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no empirical improvements for N = 10. The motivation to regularize β to be sparse comes from
bounded rationality as updating the value at key states is a desirable property. This parameter plays a
similar role as the deliberation cost in option (17). The best performing set of parameters included a
regularization parameter of 0.5 supporting this hypothesis. The performance reported are averaged
over 20 different random seeds1.

4.3 PERFORMANCE

The algorithm was tested on several games of the Mujoco suite (19). As demonstrated in the figure 3
in appendix, we observe an increase in performance on tasks - Swimmer, Hopper, Inverted Pendulum,
Double Inverted Pendulum. The performances are averaged over 20 seeds and a confidence interval
of 95% is used. Detailed plots of performance and β behaviour is found in appendix (6, 7, 8)
The performances were found to be comparable on MountainCar and the detailed discussion is in
appendix (5). One interesting finding in the figure 3 concerns inverted-pendulum in the context of
generalization. Though the convergence is quick for PPO, severe performance drops (reward drop
by more than 100) can be observed. We found that recurrent learning stabilizes the learning and
suffer significantly less drops during training. We notice that on an average PPO will suffer from 5.91
drops below 900 points over 500k steps. In contrast, recurrent learning will only drop 3.53 times.
This represent a 40% drop in catastrophic forgetting underlying the potential robustness of recurrent
learning.

4.4 QUALITATIVE INTERPRETATION OF β

Hopper: At the end of training, we qualitatively analyze β through the trajectory and observe a
cyclical behavior as shown in appendix 4. One intuitive way to look at β is: if I were to give a
different value to a state would that alter my policy significantly? We observe an increase in β value
when the agent has to take an important decision like jumping or landing. We see a decrease in β
when the agent has trivial actions to perform. This pattern is illustrated in the figure 2. This behaviour
is cyclic and repetitive and a video of the same can be found at the following link2. One surprising
fact was that this behavior was obtained without any regularization on β. Similar behavior can be
observed with regularization although the mean and variance of β diminishes.

5 DISCUSSIONS

β as an interest function: One interesting result of this work is that the β network learns to
ignore some state without any restrictions imposed on it. It does so in order to reduce the variance.
Furthermore, this β can be interpreted as an interest function. In reinforcement learning, having
access to a function quantifying the interest (7) of a state can be helpful. For example, one could
decide to explore from those states, prioritize experience replay based on those states. Further work
can be done to study how β may impact performance. We also believe β can be related to the concepts
of bottleneck state (20). Finally, the concept of interest state in recurrent learning aligns well with the
notion of interest state for the λ return. Indeed bootstrapping on states with similar values than the
one estimated will only result in variance. The most informative updates comes from bootstrapping
on state with different value.

Recurrent learning for action: We have not explored the concept of recurrent learning for actions
(Q values and policy gradient). This is a promising area as constraining actions to be temporally
coherent is a natural prior to induce on a function approximator. This technique could also be
interesting in the context of exploration as this could yield a structured exploration. Finally, this
framework with learning β can be cast as a vanilla version of options (21).

Conclusion: This paper proposes a technique to address two important aspects of reinforcement
learning algorithms namely - temporal coherence, and selective updating. First, we propose a new
formulation of temporal difference. Then, we provide experiments to corroborate the application of

1The base code used to develop this algorithm can be found here (18)
2https://youtu.be/0bzEcrxNwRw
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our method in a continuous control domain. Finally, we demonstrate interesting properties that result
while we emphasize and de-emphasize updates on states during learning.
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6 APPENDIX

6.1 CONVERGENCE PROOF

We consider the following assumptions to prove convergence. The first assumption deals with the
ergodic nature of the Markov chain. It is a common assumption in theoretical reinforcement learning
that guarantees infinitely many visits to all states thereby avoiding chains with transient states.
Assumption 1. The Markov chain is ergodic.

The second assumption concerns the relative magnitude of the maximum and the minimum reward.
It is a key element that allow us to bound the magnitude of the regularization term.
Assumption 2. We define Rmax and Rmin as the maximum and minimum reward in a MDP. The
relative magnitude between them is bounded by a factor of D such that:

DRmax ≤ Rmin

D > γ

Rmin ≥ 0

(8)

where D ∈ (0.5, 1] is a constant to be defined based on γ.

This is the most restrictive assumption of the proof. Although assumption 2 is restrictive in theory we
never observed a divergence in tabular and deep RL settings that we considered.

The key component of the proof is to control the magnitude of the term ∆t(si) = (1 −
Ct(si))(Vθ(si) − Ṽθt(si)). As the eligibility of this update gets smaller the magnitude of the
term gets bigger. This suggests that not updating certain states whose eligibility is less than the
threshold C can help mitigate biased updates. Depending on the values of γ and D we may need to
set a threshold C to guarantee convergence.
Theorem 1. Let’s define Vmax = Rmax

1−(γ+(1−D)) and Vmin = Rmin

1−(γ−(1−D)) . If the following holds

• Let X be the set of Vθ functions such that ∀s ∈ S Vmin ≤ Vθ(s) ≤ Vmax. We assume the
functions are initialized in X .

• For a given D and γ we select C such that (1− C)(Vmax − Vmin) ≤ (1−D)Vmin

then T β : X → X is a contractive operator.

Proof. The first step is to prove that T β maps to itself for any noisy update T̃ β . From 2) we know
that (1− C)Vmax − Vmin < DVmin ≤ DVmax we can then deduce that

T̃ βVθ(s) ≤ Rmax + γVmax + (1− C)(Vmax − Vmin)

≤ Rmax + (γ + (1−D))Vmax

≤ Vmax

(9)

and
T̃ βVθ(s) ≥ Rmin + γVmin + (1− C)(Vmin − Vmax)

≥ Rmin + (γ − (1−D))Vmin

≥ Vmin
(10)

The next step is to show that T β is a contractive operator:∥∥T βV − T βU∥∥∞
≤ max

s,s′
E
π

[γV (s) + ∆V (s′)− (γU(s) + ∆U (s′))]

≤ max
s,s′

E
π

[γ(V (s)− U(s)) + (1−D)(V (s′)− U(s′))]

≤ max
s

E
π

[((1−D) + γ)(V (s)− U(s))]

≤ ((1−D) + γ) ‖V − U‖∞

(11)

and from the assumption we know that (1−D) + γ < 1.

8
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6.2 SELECTING C

To select C based on γ and D it suffice to solve analytically for:
(1− C)(Vmax − Vmin) ≤ (1−D)Vmin

≡ (1− C)
Rmax

1− (γ + (1−D)
≤ ((1−D) + (1− C))

Rmin

1− (γ − (1−D)

≡ (1− C)(1− (γ − (1−D)))

(1− (γ + (1−D))((1−D) + (1− C)
Rmax ≤ Rmin

≡ D(1− C)(1− (γ − (1−D)))

(1− (γ + (1−D))((1−D) + (1− C)
Rmin ≤ Rmin

(12)

which is satisfied only if:
D(1− C)(1− (γ − (1−D)))

(1− (γ + (1−D))((1−D) + (1− C)
≤ 1 (13)

As an example for D = 0.8 and γ = 0.5 any C ≥ 0.33 satisfies this inequality.

6.3 ASSUMPTION ASYNCHRONOUS STOCHASTIC APPROXIMATION

We now discuss the assumptions of theorem 3 in (22)

Assumption 1: Allows for delayed update that can happen in distributed system for example. In
this algorithm all Vθ’s are updated at each time step t and is not an issue here.

Assumption 2: As described by (22) assumption 2 allows for the possibility of deciding whether to
update a particular component xi at time t, based on the past history of the process. This assumption
is defined to accommodate for ε-greedy exploration in Q-learning. In this paper we only consider
policy evaluation hence this assumptions holds.

Assumption 3: The learning rate of each state s ∈ S must satisfy Robbins Monroe conditions such
that there exists C ∈ R:

∞∑
i=0

αt(s)et(s) =∞ w.p.1

∞∑
i=0

(αt(s)et(s))
2 ≤ C

(14)

This can be verified by assuming that each state gets visited infinitely often and an appropriate
decaying learning rate based on #s (state visitation count) is used (linear for example).

Assumption 5: This assumption requires T to be a contraction operator. This has been proven in
theorem 1 of this paper.

6.4 DERIVATION OF β UPDATE RULE

As an example, we derive an analytic form of gradient of βω = σ(ωst) where ωst is a scalar. Taking
the derivative of loss mentioned in section 3, gives the following update rule:

ωst = ωst + α(σ(ωst)(1− σ(ωst)

(V π(st)− V βθ (st))(Vθ(st)− V βθ (st−1))).
(15)

A full derivation is below:
We wish to find β = σ(ω) minimizing the loss :

min
1

2
(V π(st)− V βθ,ω(st))

2 (16)

(17)
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Table 1: Behavior of β based on the loss

V π(st) > V β
θ (st) V π(st) < V β

θ (st)

Vθ(st) > V β
θ (st−1) β ↑ β ↓

Vθ(st) < V β
θ (st−1) β ↓ β ↑

Taking the derivative of the R.H.S of 2 gives

d

dωst

(
1

2
(V π(st)− V βθ,ω(st))

2

)
= (V π(st)− V βθ,ω(st))

(d(V π(st)− V βθ,ω(st))

dωst

))
) by chain rule

(18)

We know that d
dωσ(ωst) = σ(ωst)(1− σ(ωst))

and d
dσ(ωst )

(V π(st)−V βθ,ω(st)) = d
dσ(ωst )

(
σ(ωst)Vθ(st)+

(
1−σ(ωst)

)
V βθ,ω(st−1)−V π(st)

)
=

Vθ(st)− V βθ,ω(st−1)

Therefore,

d

dω

(
1

2
(V π(st)− V βθ,ω(st))

2 + λσ(ωst)

)
= (19)

(V π(st)− V βθ,ω(st))(Vθ(st)− V βθ,ω(st−1))

(
σ(ωst)(1− σ(ωst))

)
+ λ

(
σ(ωst)(1− σ(ωst))

)
=

(20)(
σ(ωst)(1− σ(ωst))

)(
(V π(st)− V βθ,ω(st))(Vθ(st)− V βθ,ω(st−1))

)
(21)

Finally, the update rule is simply a gradient step using the above derivative.

6.5 RELATED WORK

Recurrent learning shares similarities with many algorithms in reinforcement learning. The most
important similarity is with respect to λ return (23; 24). There is often a debate of explicit versus
implicit modelling in reinforcement learning and supervised learning from a conceptual perspective.
λ return is a way to implicitly enforce temporal coherence through the trajectory. In this paper, we
propose a method to explicitly enforce the temporal coherence using recurrent learning. Furthermore,
recurrent learning yields a natural way to estimate an emphasis function whereas setting λ efficiently
still remains an open problem. In practice both λ return and recurrent learning may be needed
to properly enforce temporal coherence. The capacity to ignore states also share some similar
motivations to semi-Markov decision process (25) and Temporal Value Transport (26). Temporal
Value Transport attempts to exploit similar ideas that recurrent learning does. It does so in a different
manner. In particular, Temporal Value Transport is based on a discrete attention mechanism using
threshold values in contrast to our continuous β attention mechanism. This yields very different
algorithms and theory in practice. As mentioned earlier, there exists similarities with emphatic TD
(7) in the sense that it emphasizes or de-emphasizes the update done to a state based on β. One key
difference with emphatic TD is that the interest is decayed across all the states using γ, whereas in
this work it is based on the interest of the future states. Our formulation is driven by the success
of forgetting and ignoring in supervised learning. Furthermore, learning the emphasis function is
not explored in (7). Our work also relates to Temporal Regularization (27) that smooth the target
of temporal difference methods using previous values of the trajectory. Although sharing similar
motivation, the algorithms proposed are different. In particular, learning smoothing coefficient is not
considered. Finally, (28) proposes a mechanism to adaptively learn to use previous estimates. In
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practice, this is done by considering an auxiliary loss between the target and the previous estimate in
contrast with the setup considered here. Furthermore, the theoretical properties(convergence) of their
algorithm is not considered.

6.6 DEEP REINFORCEMENT LEARNING

The following values were considered for the learning rate {3E−05, 6E−05, 9E−05, 3E−04, 6E−
04}, regularization coefficient {0, 0.5, 1} and N = {2, 5, 10}. The hyperparameter were selected on
10 random seeds. The optimal values for learning rate is 6E − 05, regularization coefficient is 0.5
and N = 5.
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Figure 3: Performance on Mujoco environment. The X-axis represents the training steps and the
Y-axis represents the mean reward
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Figure 4: Behavior of β through the trajectory on Hopper with the different phase described in figure
6-10.

Mountain car: Two scenarios may happen when the agent is climbing up the hill on the right side.
Either the agent has enough velocity to finish the game and obtain a high reward, or it doesn’t
have enough velocity and goes back down the hill. During early stages of training, the function
approximator is confused about the scenarios mentioned earlier, resulting a drop in value function
around step 100 as shown in figure 5. The value increases again once the agent climbs the hill with
more velocity. In PPO, we can obtain a more accurate target by setting τ to a high value, thereby
eliminating a drop in value. This enables the β network to learn to trust its past estimate rather than
the noisy point estimate, hence a significant drop in the β value. As a result, V βθ becomes a better
estimate of the target than Vθ in this scenario. After training PPO for a while this drop disappears and
the β mean goes to 1. This experiment shows the potential of β to smooth out noisy estimates in the
trajectory. One caveat to consider is the feedback loop induced by ignoring a state in control. When
the policy changes a state that can be ignored at the beginning may be essential later on. One way to
address this is to avoid saturating β such that learning remains possible later on.

11



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

0 20 40 60 80 100 120
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
va

lu
e

V

V

V *

Figure 5: Behavior of β and the value function on Mountain-Car
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Figure 6: Mean reward using recurrent PPO on Mujoco domains
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Figure 7: Mean beta values using recurrent PPO on Mujoco domains
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Figure 8: Standard variation of beta using recurrent PPO on Mujoco domains

13


	Introduction
	Technical Background
	Recurrent Learning in Reinforcement Learning
	Experiments
	Partially observable setting
	Deep Reinforcement Learning
	Performance
	Qualitative interpretation of 

	Discussions
	Appendix
	Convergence Proof
	Selecting C
	Assumption asynchronous stochastic approximation
	Derivation of  update rule
	Related Work
	Deep Reinforcement Learning


