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ABSTRACT

In practical reinforcement learning (RL) scenarios, algorithm designers might ex-
press uncertainty over which reward function best captures real-world desiderata.
However, academic papers typically treat the reward function as either (i) exactly
known, leading to the standard reinforcement learning problem, or (ii) unknown,
motivating a body of work on intrinsically-motivated exploration, where agents
learn the dynamics of their environment and visit diverse states, often as a pre-
training step to task-specific learning. We propose a framework for reinforcement
learning given a distribution over possible reward functions. Our contributions
include derivations of the Bayes-optimal and minimax policies in this setting as
well as efficient algorithms for approximating these policies.

1 INTRODUCTION

While most research on reinforcement learning (RL) addresses how to learn a policy given a Markov
decision process (MDP), how to properly design reward functions in the first place is a notori-
ously difficult task. Well-known failures include reward hacking (Clark & Amodei, 2016; Rus-
sell & Norvig, 2016), side effects (Krakovna et al., 2018), and the difficulty of learning when re-
wards are sparse (Ng et al., 1999). Recent work addressing these issues includes inverse reward
design (Hadfield-Menell et al., 2017) and intrinsic motivation (Chentanez et al., 2005).

In this paper, we define the unknown reward setting, where although a precise reward function is
not known, a distribution over possible reward functions is. Our goal is to produce a policy that
during testing, will achieve high reward on an unknown task, sampled from the task distribution.
To that end, we address both the maximization of expected and of worst-case return. To motivate
our setting, consider vehicle operation. While the physics of the environment would not change for
different agents, their preferences might (e.g., relative priority of speed, safety, and comfort).

We contribute the following: First, we derive Bayes-optimal and minimax policies for the unknown
reward setting. We present a toy example to build intuition, and then extend our results to comm-
plex continuous-control tasks. Second, we propose efficient algorithms for approximating these
policies. Recovering the minimax policy involves determining the least favorable prior, and here
we make this efficient using fictitious play (Brown, 1949) and a variant of universal value function
framework (Schaul et al., 2015). Third, our experiments demonstrate our method’s effectiveness
compared to competitive baselines.

2 POLICY SEARCH AS DECISION THEORY

Formally, we define the unknown reward setting as a distribution of MDPsM, such that each MDP
is identical but for the reward function:

M , {〈S,A, f, ri〉 | ri ∈ R} (1)
∗Equal contribution.
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Algorithm 1 Bayes-Optimal Policy Learning

function LEARNBAYESPOLICY(M, q)
Initialize policy πθ with parameters θ
Define rq(s, a) = Eri∼q[ri(s, a)]
while not converged do

Collect transitions with π,M, and rq .
Update πθ to maximize rq with RL.

return πθ

Algorithm 2 Minimax Policy Learning

function LEARNMINIMAXPOLICY(M)
Initialize q0(r), policy π0(a | s)
while not converged do

q̄t−1 ← 1
t−1

∑t−1
i=1 qi

πt ← LEARNBAYESPOLICY(q̄t−1)

π̄t ← 1
t

∑t
i=1 πi

qt ← minq Eπ̄t,q[r(s, a)]

q̄ ← 1
t

∑t
i=1 qt . Least-favorable prior

πminimax ← LEARNBAYESPOLICY(q̄)
return πminimax

Figure 1: Bayes-optimal and Minimax Policy Learning: (left) we find the Bayes-optimal policy
by using RL to maximize the expected reward under the prior; (right) to obtain the minimax policy,
the policy and prior play a 2-player, zero-sum game. The average prior q̄t converges to the least
favorable prior; the Bayes-optimal policy for this prior is the minimax policy.

where S is a set of states, A is a set of actions, f : S ×A×S → R is the transition function,R is a
distribution of reward functions, and the prior over the MDPs is inherited from the prior over reward
functions. Each reward function ri ∼ p(r) is drawn from a distribution p with supportR. However,
because we have multiple reward functions which cannot all be simultaneously maximized, we use
the Bayes-optimal and minimax (Berger, 2013) approaches to maximize the expected reward and
the worst-case reward respectively.

We consider distinct training and testing phases: while training, we have access to the task distri-
bution, but do not know which task we will face at test time. The decision problem is to choose a
policy π from a parametric class of policies Π , {πθ | θ ∈ Θ} that will perform well during testing
with respect to the Bayes-optimal or minimax notions of performance.

2.1 THE BAYES-OPTIMAL POLICY

The Bayes-optimal policy maximizes the expected reward, where expectation is taken over both the
uncertainty in the reward function and any stochasticity in the policy and MDP:

πpBayes , arg max
π∈Π

B(π, p), where B(π, p) , Eri∼p

[
Est+1∼f(st,at),

at∼π(at|st)
[ri(st)]

]
By linearity of expectation, we can rewrite this problem as a standard RL objective:

B(π, p) = Est+1∼f(st,at),
at∼π(at|st)

[rBayes(st)], where rBayes , Eri∼p[ri(st+1)].

Thus, we have reduced the decision problem of choosing the Bayes-optimal policy into an RL prob-
lem, solvable with standard algorithms (see Alg. 1).

2.2 THE MINIMAX POLICY

The minimax policy maximizes the worst-case expected reward

π∗minimax , arg max
π∈Π

min
r∈R

Est+1∼f(st,at),
at∼π(at|st)

[r(st)],

which is more difficult to optimize than the Bayes-optimal case. Note that simply optimizing a
policy by considering at each step only its current worst-case reward function does not converge
to the best worst-case policy (see Section 2.3). Instead, our approach leverages the fact that the
minimax estimator is equivalent to the Bayes-optimal estimator w.r.t. the least-favorable prior:

Theorem 1 (Berger (2013)) LetR(θ, δ) be the risk associated with using with decision rule δ when
the true parameter is θ. Assume p is a prior distribution and δp is the Bayes-optimal estimator w.r.t.
p. If p is least favorable (i.e., Ep[R(θ, δp)] = supθ R(θ, δp)), then δp is minimax.
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(a) Distribution of goals. (b) Bayes and minimax rewards. (c) Fictitious Play.

Figure 2: Illustrative Example: (a) A 21-armed bandit with uniform distribution over goal states.
(b) The Bayes-optimal and minimax return for choosing each arm. (c) The KL-divergence between
(i) the current prior and the least favorable prior, and (ii) the current policy and the minimax policy
converges to zero with fictitious play.

We propose a method that recovers the least favorable prior distribution q ∈ Pd, where Pd is the
probability simplex with dimension equal the number of reward functions:

qLFP , arg min
q∈Pd

B(π, q) (2)

The minimax policy is the Bayes-optimal policy w.r.t. this least favorable prior:

π∗minimax = πPLFP
Bayes = arg max

π∈Π
B(π, qLFP) (3)

In Section 3, we show how to determine the least favorable prior, and we can then use Algorithm 1
to obtain the corresponding Bayes-optimal policy.

2.3 ILLUSTRATIVE EXAMPLE

To build intuition for the difference between a Bayes-optimal and minimax policy, consider a 21-
armed bandit with multiple reward functions. Let G , {0} ∪ {11, 12, · · · , 20} be a set of goal
states, and let the reward function be the negative squared distance from a specific goal (i.e. a
specific reward function for each goal state):

R ,

{
rg

∣∣∣∣ri(s) = −(g − s)2, g ∈ G
}

Now assume a uniform prior over the reward functions, which results in the goal state distribution
shown in Figure 2a. In this setting, the Bayes-optimal policy will select the arm that gives the
highest reward on average, therefore selecting arm 16. While the Bayes-optimal estimator will get
low reward when goal state 0 is selected, this event occurs rarely enough under the enough prior
that it does not outweigh the benefit of being close to the remaining arms. The minimax policy will
select the arm that maximizes the worst-case reward, therefore selecting arm 11. This aligns with
our intuition: if an arm other than the middle were selected, the worst-case reward could be made
lower by selecting the goal state on the furthest arm.

As a straw man, consider an adversarial algorithm (similar to Pinto et al. (2017)) that selects the
worst-case reward function at every episode. If the initial policy chooses arm 0, then adversarial
training dictates that reward function r20 be selected for the next episode. The policy then selects
arm 20, followed by the selection of reward function r0. The policy will cycle infinitely between
choosing arms 0 and 20, never converging to the minimax policy. The algorithm that we develop in
the next section avoids this cyclic behavior by historical averaging.

3 LEAST FAVORABLE PRIORS FROM NASH EQUILIBRIA

In the minimax setting, we are maximizing the Bayes reward B(π, q) w.r.t. the policy while si-
multaneously minimizing it w.r.t. the prior over rewards, q. We can formalize this as a two-player,
zero-sum game between a policy player, whose strategies are to selecting policy parameters, and a
prior player, whose strategies are to select priors over rewards. Note that we now have two sets of
actions to distinguish between: (i) those due to traditional RL problem (actions) and (ii) those due
to the decision problem (strategies). Strategies correspond to select policy parameters and a prior
over the reward functions in our task distribution. Our goal is to recover the strategy of the prior
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player, as this corresponds to the least favorable prior. The Nash Existence Theorem proves that
such a stationary point always exists:

Theorem 2 (Nash (1951)) Every two-player, zero-sum game with finite actions has a mixed strategy
equilibrium point.

We emphasize that, while the number of strategies for both players is large, the finite precision of
computers dictates that the number of pure strategies (all unique combinations of neural network
parameters) be finite: |Θ| < ∞. While Theorem 2 proves that a stationary point exists, it fails
to provide a method for finding it. Fictitious play (Brown, 1949) is a slight variant on the naı̈ve
adversarial training procedure, that says to choose the best strategy in response to the historical
average of the opponent’s strategies (Daskalakis, 2011). Robinson (1951) proved that fictitious play
always converges to a Nash equilibrium:

Theorem 3 (Robinson (1951)) If two players use fictitious play in a zero-sum game, the historical
average of their strategies will converge to a Nash equilibrium in the limit.

Moreover, Robinson (1951) suggests and Daskalakis & Pan (2014) further explain how fictitious
play will converge to achieve a value within ε of a Nash Equilibrium within finite time.1

The historical average over strategies is a mixed strategy for both the policy player and the prior
player. Because the set of pure strategies for the prior player, Pd, is closed under convex combi-
nation, it is sufficient to consider pure strategies for the prior player. For the policy player, it is
sufficient to keep track of the rewards of the policy at each iteration, rather than the parameters.
To compute the expected reward of the historical average of policies, we can simply average the
rewards from each iteration.

Algorithm 2 summarizes our algorithm derived from this analysis: we use fictitious play to obtain a
least favorable prior and then compute the corresponding Bayes-optimal policy to obtain a minimax
policy. We apply the algorithm to the toy problem in Figure 2a and show that it obtains the least
favorable prior, and therefore the minimax policy at convergence in Figure 2c.

3.1 EFFICIENT IMPLEMENTATION WITH PRIOR-CONDITIONED POLICIES

Algorithm 3 Efficient Minimax Policy Learning

Initialize prior-conditioned policy πθ(a | s, q)
Initialize prior q0

while not converged do
Collect trajectories with π(a | s, qt)
Sample (st, at, st+1) from buffer.
Sample K reward functions ri ∼ qt(r).
rt ← 1

K

∑K
i=1 ri(s, a)

Update πθ(· | ·, qt) to maximize rt with RL.
qt+1 ← arg minQ Eri∼q

[
Eπ(·|·,qt)[ri(s)]

]
q̄ ← 1

t

∑t
i=1 qt

return πθ(· | ·, q̄) . Least favorable prior.

While Algorithm 2 will obtain the minimax
policy, it requires solving an RL problem to
convergence at each iteration. To reduce this
computational expense, a naive approach of
performing only a few gradient updates in-
stead of training the policy to convergence at
each step can be used. However, this is a
non-stationary problem due to the changing re-
wards at each episode. In this case, the non-
stationarity is solely caused by the prior, there-
fore we can make the problem stationary by
conditioning the policy (and associated value
functions) on the prior. We use a variant of
the universal value function framework (Schaul
et al., 2015) where we condition on prior distri-
butions (Alg. 3). We use an off-policy algorithm, TD3 (Fujimoto et al., 2018), to leverage transitions
collected at previous iterations by different policies.

4 EXPERIMENTS

Our experiments focus on understanding when our method works and how it compares to various
baselines. We apply our method to two continuous 2D navigation tasks: a point mass and a non-
holonomic car (Ghosh et al., 2018) on the Cartesian plane. In both cases, the agent starts at (−4,−4)

1The time to converge grows exponentially in the number of pure strategies. In our setting, pure strate-
gies correspond to neural networks. With 106 parameters, each represented as a 32-bit number, we need
O((1/ε)32

1e6

) iterations to converge.
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(a) Bayes-optimal for point. (b) Minimax for point. (c) Bayes-optimal for car. (d) Minimax for car.

Figure 3: Evaluating Bayes and minimax policy estimators: We evaluate out method on two
navigation tasks: a 2-d point in (a) and (b) and a car in (c) and (d). In both cases, we observe that our
Bayes policy achieves a higher average reward than the domain randomization baseline. For point
navigation, our minimax method quickly maximizes the worst case return, while the adversarial
baseline never converges. Both methods struggle to learn a minimax policy on the car task.

tasked with navigating to a fixed goal location at g = (4, 4). Nine zones, z1, . . . , z9, are added
between the agent’s starting location and the goal location (see Fig. 4) and each zone can positively
or negatively effect the return. The distribution of reward functions consists of 18 reward functions:

r±i (st, at, st+1) = d(st, g)− d(st+1, g)± 10 · 1(st+1 ∈ zi)
where d(s, g) is the L2 distance between the agent’s center of mass and the goal.

First, we apply our method to obtain the Bayes-optimal policy for both tasks. Our prior over reward
functions is uniform on the nine reward functions with negative reward bonuses. We compare our
method (Alg. 1) to the domain randomization baseline, inspired by Tobin et al. (2017), that samples
a reward function for each episode, rather than computing the expectation over reward functions. On
the point navigation task, both methods achieve the maximum possible cumulative reward (Fig. 3a).
On the more challenging car navigation task (Fig 3c), neither method reliably reaches the goal.
Though the effect is small, our algorithm learns faster than the domain randomization baseline on
both tasks, likely because of the lower variance in computing the expected reward.

Second, we obtain minimax policies for both tasks. We compare our method (Alg. 3) to the adver-
sarial baseline. On the point navigation task, our minimax algorithm successfully obtains a minimax
policy that maximizes the worst-case reward (Fig 3b). In contrast, the adversarial baseline experi-
ences the same cyclic behavior as in Section 2.3 and fails to converge. On the car navigation task,
neither method solves the task (Fig. 3d). This is expected, as the Bayes reward is an upper bound on
the minimax reward (Berger, 2013).

Figure 4: Least Favorable Prior for a 2D nav-
igation task.

Figure 4 plots the least-favorable prior obtained by
our minimax policy on the point navigation task.
For each unknown zone, we plot the probability that
the least favorable prior places a negative reward
bonus on that zone. We observe that the least fa-
vorable prior places large mass on the corner zones
and center zone. Intuitively, the least favorable prior
is setting up a barricade which prevents the policy
from deviating into states where any reward function
would return negative reward.

5 DISCUSSION

This paper defines the unknown reward setting, derives the Bayes-optimal and minimax policies for
this setting, and presents efficient algorithms for approximating them. While much prior work has
looked at related problems, we defer to Appendix A for a thorough discussion. Two directions are
of particular relevance and merit discussion here.

First, our work suggests that prior work on adversarial RL is actually obtaining minimax estima-
tors with respect to unknown goals (Sukhbaatar et al., 2017) or dynamics (Pinto et al., 2017). In
future work, we aim to formalize these connections to develop principled, convergent algorithms
for robust RL. Second, our algorithm provides a tool to safely handle uncertainty in reward function
design (Hadfield-Menell et al., 2017). For example, when a distribution of reward functions place
both positive and negative reward on side effects (Krakovna et al., 2018), the minimax policy will
attempt to avoid these side effects while completing the task. While AI safety is often hard to define,
our work hints that concrete definitions and practical algorithms may be found in minimax analysis.
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A RELATED WORK

Krakovna et al. (2018) introduce a general definition of side effects based on relative state reacha-
bility, and argue that some efforts of reducing side effects can make matters worse. Shelton (2001)
characterizes some of the issues in dealing with traditional scalar reward functions vs composite
reward functions, and then proposes methods for balancing preferences between differing reward
functions. Hadfield-Menell et al. (2017) introduces inverse reward design (IRD) as the problem
of inferring the true objective based on the designed reward function, as a way of mitigating risk
from misspecified objectives. They also provide methods for approximating the true objective. This
method can be used to avoid side effects.

Schaul et al. (2015) introduce universal value function approximators (UVFAs) that generalize over
both states and goals, and can therefore be used in any environment with any RL algorithm. They
then propose a method for learning UVFAs with supervised learning or directly from experience.
Sukhbaatar et al. (2017) propose asymmetric self-play, which is a method of allowing an agent to
play a game with itself to better learn an environment. This is an unsupervised process, and allows
for the agent to be familiar with an environment, before being tasked, therefore reducing the number
of episodes needed to learn a new task in that environment.

Taylor & Stone (2009) provides a survey of transfer learning techniques in reinforcement learning,
and here we will focus on the tasks that allow variation in the reward function. Singh (1992) and
Foster & Dayan (2002) learn multiple tasks by assuming that each goal (or composite) task is com-
posed of several elemental tasks, and then learning a set of elemental tasks that can be composed to
solve each task of interest.

Solving multiple MDPs has also been approached from the representation perspective, specifically
with the goal of developing a shared representation that can then be used to solve all tasks. The
approach proposed by Asadi & Huber (2007) focuses on learning a more efficient state-space rep-
resentation of the problem that will transfer between multiple tasks, and then learning options on
the new representation. Walsh et al. (2006) use a similar approach, but rely on the learned state
abstraction techniques to transfer between tasks. Another approach similar to state abstractions is to
compare observations (〈s, a, r, s′〉) tuples from previous tasks to new tasks, then select the best ac-
tion from the most similar previously experienced observation. Lazaric (2008) uses this approach in
an attempt to generalize experiences from learned to novel tasks, and then Calandriello et al. (2014)
extend this approach to include sparse representations.

Furthermore, reward function restriction, state-space augmentation, and multiple policies have been
used to ease the burden of dealing with multiple goals or tasks. If the class of considered reward
functions is restricted to be linear, Mehta et al. (2008) show that a value function for the correspond-
ing class of MDPs can be found by combining the learned value function for a finite number of
MDPs with a specific reward function drawn from the restricted class. Snel & Whiteson (2014) aug-
ment a task’s reward function with artificial rewards to capture important task and domain relevant
knowledge. Fernández & Veloso (2006) consider when the distribution of reward functions is the set
of reward functions in which only the goal state differs. A library of policies is kept and updated if
a sufficiently different policy is learned. At each time step in novel tasks, the agent chooses exploit
an existing policy, the current best policy, or randomly explore.

One approach to solving our problem formulation is to simply solve all MDPs, and place a constraint
on the model to ensure the final policy accounts for each reward function. Several prior works
have analyzed this approach. Wilson et al. (2007) consider learning in a hierarchical Bayesian
RL setting, in which the prior is transferred from previously learned tasks. Choi & Kim (2012)
present a nonparametric Bayesian approach to inverse reinforcement learning (IRL) with multiple
reward functions by incorporating Dirichlet process mixture model into Bayesian IRL, along with
a sampling algorithm to estimate the underlying reward functions. Another method of adapting a
model to new tasks is that of Teh et al. (2017), where they solve all problems independently, but
with the constraint that all individual policies stay close to a central shared policy. These approaches
require learning against many MDPs, versus our method of redefining a new reward function and
learning a single MDP (in the Bayesian case).

The game theory approaches mentioned in Section 3 have also been explored. Pinto et al. (2017)
create a two-player zero-sum game by training an agent and a protagonist in conjunction, and then
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framed the problem as finding the minimax equilibrium. The protagonist adversarially impedes an
agent through external forces, through action, or through environmental changes, leading to better
generalization. Pattanaik et al. (2018) take a similar approach, but directly optimize for the adver-
sarial attack instead of forming a two-player game. These are similar to our setup, except that the
protagonist is used to find the least favorable prior over reward functions in our case.

Adversarial training has also been well explored. Rajeswaran et al. (2016) propose a method for
learning robust policies that can handle domain shift by adversarially training the policy among a
range of domains. Pinto et al. (2017) use adversarial forces to disrupt systems during training, and
as a result produce more robust policies that both generalize and transfer better than baselines. Fu
et al. (2017) combine adversarial learning with inverse reinforcement learning and present a method
that simultaneously learns the value function as well as a reward function that is invariant to the
environments dynamics.

Similar to Adversarial training, another relevant and well explored domain relating to reward func-
tions is safe RL. Garcıa & Fernández (2015) provides a survey on safe RL techniques. The worst-
case RL considerst the minimax setting we propose, but is more general to allow for uncertainty
in the system, estimators, or the policy. Risk-Sensitive RL focuses on controlling risk, where often
times risk is defined as the variance of the return.

9


	Introduction
	Policy Search as Decision Theory
	The Bayes-Optimal Policy
	The Minimax Policy
	Illustrative Example

	Least Favorable Priors from Nash Equilibria
	Efficient Implementation with Prior-Conditioned Policies

	Experiments
	Discussion
	Related Work

