
Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

SEARCH ON THE REPLAY BUFFER:
BRIDGING PLANNING AND REINFORCEMENT LEARNING

Benjamin Eysenbach
Carnegie Mellon University, Google Brain
beysenba@cs.cmu.edu

Ruslan Salakhutdinov
Carnegie Mellon University
rsalakhu@cs.cmu.edu

Sergey Levine
UC Berkeley, Google Brain
svlevine@eecs.berkeley.edu

ABSTRACT

The history of learning to control has been an exciting back and forth between
two broad classes of algorithms: planning and reinforcement learning. Planning
algorithms effectively reason over extraordinarily long horizons, but are limited by
their dependence on a hand-crafted local policy and distance metric over collision-
free paths. Reinforcement learning excels at learning policies and predicting
reachability through value functions, but fails to plan over long horizons. Despite
the successes of each method on various tasks, long horizon, sparse reward tasks
with high-dimensional remain exceedingly challenging for both planning and
reinforcement learning algorithms. Frustratingly, these sorts of tasks are potentially
the most useful, as they are simple to design (a human only need to provide
an example goal state) and avoid injecting bias through reward shaping. We
introduce a general-purpose control algorithm that combines the strengths of
planning and reinforcement learning to effectively solve these tasks. Our main
idea is to decompose the task of reaching a distant goal state into a sequence of
easier tasks, each of which corresponds to reaching a particular subgoal. Using
graph search over our replay buffer, we can automatically generate this sequence
of subgoals, even in image-based environments. Our framework, Search on the
Replay Buffer (SoRB), enables agents to solve sparse reward tasks over hundreds
of steps, and generalizes substantially better than standard RL algorithms.

1 INTRODUCTION

Figure 1: SoRB: In this cartoon illustration of
SoRB, the robot makes a plan to bake a cake. Our
algorithm, SoRB, automatically finds the subgoals
via graph search over previously-seen images.

How should agents learn to solve complex, tem-
porally extended tasks? How should agents
acquire the ability to reach new goals spec-
ified at test time? Classically, planning al-
gorithms give use one tool for learning such
tasks. While planning algorithms work well for
tasks where it is easy to determine distances be-
tween states and easy to design a local policy
to reach nearby states, both of these require-
ments become roadblocks when applying plan-
ning to high-dimensional (e.g., image-based)
tasks. Learning algorithms excel at handling
high-dimensional observations, but reinforce-
ment learning – learning for control – fails to
reason over long horizons to solve temporally extended tasks. Moreover, existing RL algorithms
cannot be repurposed learned policies to achieve new goals specified at test time.

Recent work has introduced goal-conditioned RL (Schaul et al., 2015; Pong et al., 2018) in an attempt
to acquire a single agent that can reach a wide range of goals. The overarching idea is that learning to
reach a wide range of goals will allow the policy to generalize to new goals and be more data efficient

1

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

than learning a separate policy for each goal. In practice, goal-conditioned RL succeeds in reaching
nearby goals but fail to reach distant goals; performance degrades quickly as the number of steps to
the goal increases. Moreover, goal-conditioned RL often requires large amounts of reward shaping,
which can limit the asymptotic performance of the policy by discouraging the policy from seeking
novel solutions.

We propose to solve long-horizon sparse reward tasks by decomposing the task into a series of easier
goal-reaching tasks. We learn a goal-conditioned policy for solving each of the goal-reaching tasks.
Our key insight is that we can reduce the problem of finding these subgoals to solving a shortest
path problem over states that we have previous visited. Using a distance metric extracted from our
goal-conditioned policy, we solve the shortest path problem over previously visited states. We call
this general framework Search on Replay Buffer (SoRB).

Our primary contribution is a framework (SoRB) that bridges planning and deep RL to solving
long-horizon, sparse reward tasks. We develop a practical instantiation of this framework using
ensembles of distributional value functions, which allow us to robustly learn distances and use them
for risk-aware planning. Empirically, we find that our method generates effective plans to solve
long horizon navigation tasks, even in image-based domains. Comparisons with state-of-the-art RL
baselines show that SoRB is substantially more successful in reaching distant goals.

2 BRIDGING PLANNING AND REINFORCEMENT LEARNING

Algorithm 1 Inputs are the current state s, the goal
state g, the active set T , the learned policy π and
its value function V . Returns an action a.

function SEARCHPOLICY(s, g, T , V, π)
dsp, w1 ← SHORTESTPATH(s, g, T , V)
dπ ← −V (s, g)
if dsp < dπ or dπ > MAXDIST then

a← π(a, | s, w1)
else

a← π(a, | s, g)
return a

Planning algorithms must (1) sample valid
states (i.e., in free space), (2) determine
which pairs of states are reachable, and
(3) estimate the distance between reach-
able pairs of states. These requirements are
difficult to satisfy in complex tasks with
high dimensional images. For example,
consider a robot arm stacking blocks us-
ing image-based observations. Sampling
states requires generating photo-realistic
images, and determining reachability re-
quires reasoning about dozens of interac-
tions between blocks. Our method will
obtain distance and reachability estimates using a reinforcement learning algorithm. To sample states,
we will simply use a replay buffer of previously visited states as a non-parametric generative model.
Our approach is outlined in Algorithm 2: after learning distances using off-policy RL, we do graph
search to find a set of waypoints, and then use the learned policy to reach these waypoints.

Assumptions: Unlike planning algorithms, we do not assume that we have access to a reachability
oracle or a distance oracle. However, we do assume that we have a state identity oracle id : S × S →
{0, 1} that takes as input two states, and outputs 1 if those states are with nearly identical. One way
to remove this assumption is to say two states are identical if their distance in some representation
space is small. We leave this as future work.

2.1 LEARNING DISTANCES WITH REINFORCEMENT LEARNING

We consider an agent that maximizes its cumulative, undiscounted reward. We define the reward for
s and action a with respect to goal g as

r(s, g, a) ,

{
−1 if id(s, g) = 1

0 otherwise
(1)

Crucially, we will terminate the episode as soon as the agent reaches the goal. With these ingredients
in hand, we observe a close connection between the Q values and shortest paths. We define dsp(s, g)
to be the shortest path distance from state s to state g. That is, dsp(s, g) is the expected number of
steps to reach g from s under the optimal policy. The value of state s with respect to goal g is simply
the negative shortest path distance: V (s, g) = −dsp(s, g). Overloading notation, we can define
dsp(s, g, a) as the shortest path distance, conditioned on initially taking action a. Then Q values

2

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

also equal a negative shortest path distance: Q(s, g, a) = −dsp(s, g, a). Thus, we have reduced the
problem of learning distances into a standard RL problem.

2.2 DISTANCES VIA DISTRIBUTIONAL REINFORCEMENT LEARNING

Figure 2: Bellman update for distribu-
tional distance learning.

Standard Q-learning with the reward function in Equa-
tion 1 will fail to learn accurate distance estimates. The
true value for a state and goal that are unreachable is −∞,
which cannot be represented by a standard, feed-forward
Q-network. Simply clipping the Q-value estimates to be
within some range avoids the problem of ill-defined Q-
values, but results in very unstable learning dynamics. We
adopt distributional Q-learning (Bellemare et al., 2017),
noting that is has a convenient form when used with the
reward function in Equation 1. In distributional RL, we
discretize the possible value estimates into discretized set
of bins B = (B1, B2, · · · , BN). For learning distances,
the bins B are simply distances, so Bi corresponds to the probability that the current state and goal
are i steps away from one another. Our Q-function predicts a distribution Q(s, g, a) ∈ PN over
these bins, where Q(s, g, a)i is the predicted probability that states s and g are i steps away from one
another. To avoid ill-defined Q-values, the final bin, BN is a catch-all for predicted distances of at
least N . Importantly, this gives us a well-defined method to represent large and infinite distances.
Under this formulation, the targets Q∗ for our Q-values have a simple form:

Q∗ =

{
(1, 0, · · · , 0) if id(s, g) = 1

(0, Q1, · · · , QN−2, QN−1 +QN) if id(s, g) = 0

As illustrated in Figure 2, if the state and goal are equivalent, then the target places all probability
mass in bin 1. Otherwise, the targets are a right-shift of the current predictions. To ensure the
target values sum to one, the mass in bin N of the targets is the sum of bins N − 1 and N from the
predicted values. Following Bellemare et al. (2017), we update our Q function by minimizing the KL
divergence between our predictions Qθ and the target Q∗.

3 EXPERIMENTS

Figure 3: Simple 2D Navigation: An agent that combines a feedforward policy with search is
substantially more successful at reaching distant goals than using the feedforward policy alone.

3.1 DIDACTIC EXPERIMENT: SIMPLE 2D NAVIGATION

We start by gaining intuition for our method by applying it to two simple, 2D navigation tasks (details
in Appendix B). The magnitude of the agent’s actions is intentionally small, so reaching the goal can
take over 100 steps, even for the optimal policy. Figure 3 visualizes the success rate as we vary the
distance to the goal. We observe that the learned policy can reach nearby goals, but fails to generalize
to distant goals. In contrast, the search policy successfully generalize in reaching these distant goals.

3.2 SEARCHING OVER IMAGES FOR VISUAL NAVIGATION

We now examine how our method scales to high-dimensional observations. We apply SoRB to visual
navigational in SunCG houses (Song et al., 2017), similar to the task described in Fu et al. (2019).

3

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

Figure 4: Visual Navigation: RL algorithms without search (HER, C51, and HER + C51) degrade
quickly as the distance to the goal increases, while our method (SoRB) continues to succeed in
reaching goals.

The agent receives either RGB or Depth images and takes actions to move North/South/East/West.
To mitigate partial observability, we stitch four images into a panorama, so the resulting observation
has dimension 4× 24× 32× C, where C is the number of channels (3 for RGB, 1 for Depth).

Figure 5: Visual Navigation: Rollouts of the base-
line RL policy (top) and the search policy (bottom)
on the same start and goals. The agent does not
have access to the global (x, y) position.

We evaluate three state-of-the-art base-
lines: Hindsight Experience Replay
(HER) (Andrychowicz et al., 2017), Dis-
tributional RL (C51) (Bellemare et al., 2017),
and a combination of both baselines (HER
+ C51). Our method, SoRB, is obtained by
performing search on top of the HER + C51
baseline. Figure 4 shows that while all baselines
degrade quickly as the distance to the goal
increases, our method continues to succeed in
reaching goals with probability around 90%.
We run another experiment to study how our
search policy generalizes to new domains in
Appendix C.

4 RELATED WORK

Planning Algorithms: Planning algorithms (LaValle, 2006; Choset et al., 2005) efficiently solve
long-horizon tasks, including those that stymie reinforcement learning algorithms (see, e.g., Levine
et al. (2011); Kavraki et al. (1996); Lau & Kuffner (2005)). However, these techniques assume that we
can (1) efficiently sample valid states and (2) estimate the distance between two states, which make it
challenging to apply these techniques to high-dimensional tasks (e.g., with image-based observations).
Our method removes these assumptions by (1) sampling states from the replay buffer and (2) learning
the distance metric with reinforcement learning. While the underlying motion planner we use is
quite simple (namely, Dijkstra), we believe that the key idea of uses distance estimates obtained from
RL algorithms for planning will open doors to incorporating more sophisticated motion planning
techniques into reinforcement learning.

Goal-Conditioned Reinforcement Learning: Goal conditioned policies (Kaelbling, 1993b; Schaul
et al., 2015; Pong et al., 2018) take as input the current state and a goal state, and predict a sequence of
actions to arrive at the goal. Our algorithm learns a goal conditioned policy to reach waypoints along
the planned path. Recent algorithms (Andrychowicz et al., 2017; Pong et al., 2018) combine off-policy
RL algorithms with goal-relabelling to improve upon the sample complexity and robustness of goal
conditioned policies. Similar algorithms have been proposed for visual navigation (Anderson et al.,
2018; Gupta et al., 2017; Zhu et al., 2017; Mirowski et al., 2016). A common theme in recent work is
learning distance metrics to accelerate reinforcement learning. While most methods (Florensa et al.,
2019; Savinov et al., 2018; Wu et al., 2018) simply perform RL on top of the learned representation,
our method explicitly performs search using the learned metric. We choose an off-policy RL
algorithm (Lillicrap et al., 2015) with goal relabelling and distributional RL (Bellemare et al., 2017))
not only for improved data efficiency, but also to obtain good distance estimates.

Hierarchical RL: Hierarchical RL algorithms automatically learn a set of primitive skills to help an
agent learn complex tasks. One class of methods (e.g., Kaelbling (1993a); Parr & Russell (1998);

4

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

Sutton et al. (1999); Precup (2000); Vezhnevets et al. (2017); Nachum et al. (2018); Frans et al.
(2017); Bacon et al. (2017); Kulkarni et al. (2016)) jointly learn a low-level policy for performing each
of the skills, and a high-level policy for sequencing these skills to complete a desired task. Another
class of algorithms (e.g., Fox et al. (2017); Şimşek et al. (2005); Drummond (2002)) focus solely on
automatically discovering these skills or subgoals. SoRB learns primitive skills that correspond to
goal-reaching tasks, similar to Nachum et al. (2018). For sequencing these skills, SoRB directly relies
on graph search, rather than learning an explicit, high-level policy. Learning the high-level policy is a
often quite challenging because it is non-stationary: the actions for the high-level policy correspond
to running certain low-level skills, but the meaning of the actions changes as the low-level skills
are updated throughout training. Moreover, SoRB is more interpretable: it is easier to reason about
shortest paths than deep neural networks. Whereas most hierarchical RL algorithms can be applied to
any task, SoRB only works on goal-reaching tasks. We argue that the class of goal-reaching tasks is
not overly restrictive, and provides rich structure in the form of shortest paths that algorithms like
SoRB can exploit to obtain more efficient policies.

model real states multi-step prediction
dimension

state-space 3 3 1000s+
latent-space 7 7 10s

inverse 3 7 10s
SoRB 3 3 1

Figure 6: Four classes of model-based RL methods.
Dimensions in the last column correspond to typi-
cal robotics tasks with image/lidar observations.

Model Based RL: Reinforcement learning
methods are typically divided into model-
free (Williams, 1992; Schulman et al., 2015b;a;
2017) and model-based (Watkins & Dayan,
1992; Lillicrap et al., 2015) approaches. Model-
based approaches all perform some degree of
planning, from predicting the value of some
state (Silver et al., 2016; Mnih et al., 2013), ob-
taining representations by unrolling a learned
dynamics model (Racanière et al., 2017), or
learning a policy directly on a learned dynamics
model (Sutton, 1990; Chua et al., 2018; Kuru-
tach et al., 2018a; Finn & Levine, 2017; Agrawal et al., 2016; Oh et al., 2015; Nagabandi et al., 2018).
One line of work (Amos et al., 2018; Srinivas et al., 2018; Tamar et al., 2016; Lee et al., 2018) embeds
a differentiable planner inside a policy, with the planner learned end-to-end with the rest of the policy.
Other work (Watter et al., 2015; Lenz et al., 2015) explicitly learns a representation for use inside
a standard planning algorithm. Broadly, model-based approaches fall into three classes, learning
a state-space transition model (Chua et al., 2018; Deisenroth & Rasmussen, 2011), a latent-space
models (Hafner et al., 2018; Watter et al., 2015; Zhang et al., 2018; Kurutach et al., 2018b), or a
inverse-action models (Pathak et al., 2017; Agrawal et al., 2016; Nair et al., 2017). In contrast, SoRB
learns to predict the distances between states, which can be viewed as a high-level inverse model.
SoRB predicts a scalar (the distance) rather than actions or observations, making the prediction
problem substantially easier. By planning over previously visited states, SoRB does not have to
cope with infeasible states that can be predicted by forward models in state-space and latent-space.
While inverse action models consider a pair of consecutive states, SoRB considers distances between
arbitrary pairs of states, allowing it to be readily applied to multi-step problems.

5 FUTURE WORK

In summary, we present SoRB as a method for combining planning algorithms with reinforcement
learning. By exploiting the structure of goal-reaching tasks, we can obtain policies that generalize
substantially better than those learned directly from RL. We believe that further work in this direction
will facilitate sharing of ideas between planning and learning communities.

Acknowledgements: We thank Vitchyr Pong, Xingyu Lin, and Shane Gu for helpful discussions on
learning goal-conditioned value functions, and Brian Okorn for feedback on connections to motion
planning.

REFERENCES

Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke by
poking: Experiential learning of intuitive physics. In Advances in Neural Information Processing Systems, pp.
5074–5082, 2016.

5

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and J Zico Kolter. Differentiable mpc for end-to-end
planning and control. In Advances in Neural Information Processing Systems, pp. 8289–8300, 2018.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould,
and Anton van den Hengel. Vision-and-language navigation: Interpreting visually-grounded navigation
instructions in real environments. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3674–3683, 2018.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew,
Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In Advances in
Neural Information Processing Systems, pp. 5048–5058, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 449–458. JMLR. org,
2017.

Howie M Choset, Seth Hutchinson, Kevin M Lynch, George Kantor, Wolfram Burgard, Lydia E Kavraki, and
Sebastian Thrun. Principles of robot motion: theory, algorithms, and implementation. MIT press, 2005.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learning in a
handful of trials using probabilistic dynamics models. In Advances in Neural Information Processing Systems,
pp. 4759–4770, 2018.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy search. In
Proceedings of the 28th International Conference on machine learning (ICML-11), pp. 465–472, 2011.

Chris Drummond. Accelerating reinforcement learning by composing solutions of automatically identified
subtasks. Journal of Artificial Intelligence Research, 16:59–104, 2002.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2786–2793. IEEE, 2017.

Carlos Florensa, Jonas Degrave, Nicolas Heess, Jost Tobias Springenberg, and Martin Riedmiller. Self-supervised
learning of image embedding for continuous control. arXiv preprint arXiv:1901.00943, 2019.

Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level discovery of deep options. arXiv preprint
arXiv:1703.08294, 2017.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared hierarchies. arXiv
preprint arXiv:1710.09767, 2017.

Justin Fu, Anoop Korattikara, Sergey Levine, and Sergio Guadarrama. From language to goals: Inverse
reinforcement learning for vision-based instruction following. arXiv preprint arXiv:1902.07742, 2019.

Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Malik. Cognitive mapping and
planning for visual navigation. arXiv preprint arXiv:1702.03920, 3, 2017.

Josef Hadar and William R. Russell. Rules for ordering uncertain prospects. The American Economic Review,
59(1):25–34, 1969. ISSN 00028282. URL http://www.jstor.org/stable/1811090.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James Davidson.
Learning latent dynamics for planning from pixels. arXiv preprint arXiv:1811.04551, 2018.

Leslie Pack Kaelbling. Hierarchical learning in stochastic domains: Preliminary results. In Proceedings of the
tenth international conference on machine learning, volume 951, pp. 167–173, 1993a.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, pp. 1094–1099. Citeseer, 1993b.

Lydia Kavraki, Petr Svestka, and Mark H Overmars. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE transactions on robotics and automation, 12(4):566–580, 1996.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep reinforcement
learning: Integrating temporal abstraction and intrinsic motivation. In Advances in neural information
processing systems, pp. 3675–3683, 2016.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble trust-region
policy optimization. arXiv preprint arXiv:1802.10592, 2018a.

6

http://www.jstor.org/stable/1811090

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J Russell, and Pieter Abbeel. Learning plannable representations
with causal infogan. In Advances in Neural Information Processing Systems, pp. 8747–8758, 2018b.

Manfred Lau and James J Kuffner. Behavior planning for character animation. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pp. 271–280. ACM, 2005.

Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and Ruslan Salakhutdinov. Gated path planning
networks. arXiv preprint arXiv:1806.06408, 2018.

Ian Lenz, Ross A Knepper, and Ashutosh Saxena. Deepmpc: Learning deep latent features for model predictive
control. In Robotics: Science and Systems. Rome, Italy, 2015.

Sergey Levine, Yongjoon Lee, Vladlen Koltun, and Zoran Popović. Space-time planning with parameterized
locomotion controllers. ACM Transactions on Graphics (TOG), 30(3):23, 2011.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Ballard, Andrea Banino, Misha Denil,
Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al. Learning to navigate in complex environments.
arXiv preprint arXiv:1611.03673, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforcement
learning. In Advances in Neural Information Processing Systems, pp. 3307–3317, 2018.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynamics for model-
based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 7559–7566. IEEE, 2018.

Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Com-
bining self-supervised learning and imitation for vision-based rope manipulation. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2146–2153. IEEE, 2017.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-conditional video
prediction using deep networks in atari games. In Advances in neural information processing systems, pp.
2863–2871, 2015.

Ronald Parr and Stuart J Russell. Reinforcement learning with hierarchies of machines. In Advances in neural
information processing systems, pp. 1043–1049, 1998.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-
supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 16–17, 2017.

Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models: Model-free deep rl
for model-based control. arXiv preprint arXiv:1802.09081, 2018.

Doina Precup. Temporal abstraction in reinforcement learning. University of Massachusetts Amherst, 2000.

Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez, Danilo Jimenez Rezende,
Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al. Imagination-augmented agents for
deep reinforcement learning. In Advances in neural information processing systems, pp. 5690–5701, 2017.

Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent, Marc Pollefeys, Timothy Lillicrap, and
Sylvain Gelly. Episodic curiosity through reachability. arXiv preprint arXiv:1810.02274, 2018.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators. In
International Conference on Machine Learning, pp. 1312–1320, 2015.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International Conference on Machine Learning, pp. 1889–1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015b.

7

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with
deep neural networks and tree search. nature, 529(7587):484, 2016.

Özgür Şimşek, Alicia P Wolfe, and Andrew G Barto. Identifying useful subgoals in reinforcement learning
by local graph partitioning. In Proceedings of the 22nd international conference on Machine learning, pp.
816–823. ACM, 2005.

Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas Funkhouser. Semantic scene
completion from a single depth image. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1746–1754, 2017.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal planning networks.
arXiv preprint arXiv:1804.00645, 2018.

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approximating dynamic
programming. In Machine Learning Proceedings 1990, pp. 216–224. Elsevier, 1990.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks. In Advances
in Neural Information Processing Systems, pp. 2154–2162, 2016.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David Silver, and
Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pp. 3540–3549. JMLR. org, 2017.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A locally
linear latent dynamics model for control from raw images. In Advances in neural information processing
systems, pp. 2746–2754, 2015.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in rl: Learning representations with efficient
approximations. arXiv preprint arXiv:1810.04586, 2018.

Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew J Johnson, and Sergey Levine. Solar: Deep
structured latent representations for model-based reinforcement learning. arXiv preprint arXiv:1808.09105,
2018.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-
driven visual navigation in indoor scenes using deep reinforcement learning. In Robotics and Automation
(ICRA), 2017 IEEE International Conference on, pp. 3357–3364. IEEE, 2017.

8

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

A EFFICIENT SHORTEST PATH COMPUTATION

Algorithm 2 Inputs are the current state s, the goal
state g, the active set T , and the value function V .
Returns the length and first waypoint of the shortest
path.

function SHORTESTPATH(s, g, T , V)
// Matrices: Dπ, DT→T , Ds→g ∈ R|T |×|T |
// Vectors: Ds→T , DT→g ∈ R|T |
Dπ ← −V (T , T) . cached
DT→T ← FLOYDWARSHALL(Dπ) .

cached
Ds→T ← −V (s, T)
DT→g ← −V (T , g)
Ds→g ← Ds→T +DT→T + (DT→g)

T

dsp ← min
u,v∈T

Ds→g[u, v]

w1, wn ← arg min
u,v∈T

Ds→g

return dsp, w1

Our policy solves a shortest path problem
every time it recomputes a new waypoint.
Naı̈vely running Dijkstra’s algorithm to
compute a shortest path among the states in
our active set T requires O(|T |2) queries
of our value function. While the search
algorithm itself is fast, it is expensive to
evaluate the value function on each pair of
states at every time step.

In our implementation (Algorithm 2), we
amortize this computation across many
calls to the policy. We periodically period-
ically evaluate the value function on each
pair of nodes in the active set, and then used
the Floyd Warshall algorithm to compute
the shortest path between all pairs. This
takes O(|T |3) time, but only O(|T |2) calls
to the value function. Let D ∈ R|T |×|T |
be the resulting matrix storing the shortest
path distances between all pairs of states in the active set. Now, given a start state s and goal state g,
the shortest path distance is

dsp(s, g) = min

(
min
u,v∈T

d(s, u) +D[u, v] + d(v, g), d(s, g)

)
This computation requires O(|T |) calls to the value function, substantially better than the O(|T |2)
calls required with the naı̈ve implementation.

The cost of this amortized computation is that we use stale distance estimates. In practice, we
find that distance estimates vary slowly throughout training, so the stale distance estimates remain
approximately correct.

B ENVIRONMENTS

B.1 2D NAVIGATION ENVIRONMENTS

Figure 7: Navigation environments.

We used two simple navigation environments, Point-U and Point-FourRooms, shown in Figure 7.
In both environments, the observations are the location of the agent, s = (x, y) ∈ R2. The agents
actions a = (dx, dy) ∈ [−1, 1]2 are added to the agents current position at every time step. We tuned
the environments so that the baseline algorithm would perform as well as possible. Observing that
the baseline agent would get stuck at corners, we modified the environment to automatically add

9

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

Gaussian noise to the agents action. The resulting dynamics were

st+1 = proj(st + at + εt) where εt ∼ N (0, σ2)

where proj() handles collisions with walls by projecting the state to the nearest free state. We used
σ2 = 1.0 for Point-U, and σ2 = 0.1 for the (larger) Point-FourRooms environment.

B.2 VISUAL NAVIGATION

For the visual navigation tasks, success is defined as arriving within 1 meter of the goal state in 100
steps. In Figure 4, each line corresponds to one of 5 random seeds. For each distance, each random
seed was evaluated on 30 randomly-sampled (start, goal) pairs. Figure 5 shows example rollouts of
the baseline HER + C51 (top) and out method (bottom). To avoid cherry-picking, we saved the first 3
rollouts of the first random seed when evaluating on the most distant set of goals (≈ 20 steps).

C GENERALIZATION

Figure 8: Generalization in Visual Navigation: After training on 100 environments, we collect data
in a new environment to use for search. Opaque lines correspond to average success rate (across 30
start-goal pairs) across 3 training runs (with different random seeds) across 22 held-out houses

We study the generalization of our method on the visual navigation tasks. We train on a set of 100
houses. At test time, collect random data from the test environment and use that data to perform
search. Figure 8 compares our method to the HER + C51 baseline. With RGB observations, neither
method performs better than a random policy. Surprisingly, with Depth observation, our method
reaches almost 80% of goals that are 10 steps away, and more than 40% of goals that are 20 steps
away.

D TRICKS FOR LEARNING DISTANCES WITH RL

1. Small learning rates: Especially for the image-based tasks, we found that RL completely
failed with using a critic learning rate larger than 1e-4. Smaller learning rates work too, but
take longer to converge.

2. Distributional RL: The value function update for distributional RL has a particularly nice
form when values correspond to distances. Additionally, distributional RL implicitly clips
the values, preventing the critic to predict that unreachable states are infinitely far away.

3. Termination Condition: Carefully consider whether you set done = True at the end of
each episode. In our setting the agent received a reward of -1 at each time step, so the value
of each state was negative. An optimal agent therefore attempts to terminate the episode
as quickly as possible. We only set done = True when the agent reached the goal state,
not when the maximum number of time steps was reached or when it reached some other
absorbing state.

4. Ensembles of Value Functions: Predicted distances from a single value function can be
inaccurate for unseen (state, goal) pairs. When performing search using these predicted
distances, these inaccurately-short predictions result in “wormholes” through the environ-
ment, where the agent mistakenly believes that two distant states are actually nearby. To
mitigate this, we trained multiple, independent critics in parallel on the same data, and then
aggregated predictions from each before doing search. Surprisingly, we found that taking

10

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

the average predicted distance over the ensemble worked as well as taking the maximum
predicted distance. We tried accelerating training by using shared convolutional layers for all
critics in the ensemble, but found that this resulted in highly-correlated distant predictions
that exhibited the “wormhole” problem.

E FAILED EXPERIMENTS

1. Goal Relabelling: As mentioned above, we tried to combine our method with off-policy
goal relabelling (Andrychowicz et al., 2017; Pong et al., 2018). Surprisingly, we found that
this hurt performance of the non-search policy, and had no effect on the search policy.

2. Lower-bounds on Q-values: We attempted to use the search path to obtain a lower bound
on the target Q-values during training. In the Bellman update, we replaced the distance
predicted by the target Q-values with the minimum of (1) the distance predicted by the target
Q-network and (2) the distance of the shortest search path. This can be interpreted as a
generalization of the single-step lower bound from Kaelbling (1993b). Initial experiments
showed this approach slowed down learning, and in some cases prevented the algorithm
from converging. We hypothesize that Q-learning is must more sensitive to error in the
relative values of two actions, rather than the absolute value of any particular action. While
our lower-bound method likely decreased the absolute error, it did not decrease the relative
error (and may have even increased it).

3. TD3-style Ensemble Aggregation: In our main experiments, we aggregated distance predic-
tions from the ensemble of distributional critics by first computing the expected distance
of each critic, and then averaging the predicted means. This approach ignores the fact that
our critics are distributional. Inspired by the stability of TD3, we attempted to apply a
similar approach to aggregating predictions from the ensemble of distributional critics. The
naı̈ve approach of taking the minimum for each atom does not work because the resulting
distribution will not sum to one. Instead, we first compute the cumulative density function
(CDF) of each critic and then take the pointwise maximum over the CDFs. Note that critics
correspond to negative distance, so the maximum corresponds to being pessimistic. Finally,
we convert the resulting CDF back into a PDF and return the corresponding expected dis-
tance. While this method has neat connections to second-order stochastic dominance and
risk-averse expected utility maximizers (Hadar & Russell, 1969), we found that it worked
quite poorly in practice.

11

	Introduction
	Bridging Planning and Reinforcement Learning
	Learning Distances with Reinforcement Learning
	Distances via Distributional Reinforcement Learning

	Experiments
	Didactic Experiment: Simple 2D Navigation
	Searching over Images for Visual Navigation

	Related Work
	Future Work
	Efficient Shortest Path Computation
	Environments
	2D Navigation Environments
	Visual Navigation

	Generalization
	Tricks for Learning Distances with RL
	Failed Experiments

