
Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

PERCEPTION-PREDICTION-REACTION AGENTS FOR
DEEP REINFORCEMENT LEARNING

Adam Stooke∗
Department of Computer Science
University of Berkeley
adam.stooke@berkeley.edu

Valentin Dalibard
DeepMind

Siddhant M. Jayakumar
DeepMind

Wojciech M. Czarnecki
DeepMind

Max Jaderberg
DeepMind

ABSTRACT

Deep reinforcement learning agents with recurrent neural networks have been
widely successful in solving partially observable environments. However, these
agents can struggle with long-term memory tasks. In this paper, we introduce a
novel recurrent agent architecture and associated auxiliary losses which improve
learning in such tasks. We employ a temporal hierarchy, using a slow-ticking
recurrent core to allow information to flow more easily over long time spans.
A fast-ticking core incorporates new observations with the slow core’s output
to produce the agent’s policy. Two other fast-ticking cores have access to only
partial information (either long-term or short-term), and produce auxiliary poli-
cies which act as priors: an auxiliary loss regularizes all three policies against
each other. We present the resulting Perception-Prediction-Reaction (PPR) Agent
and demonstrate its improved performance over a strong LSTM-agent baseline
in DMLab-30, particularly in tasks involving long-term memory. In a series of
ablation experiments, we probe the importance of each component of the PPR
Agent.

1 INTRODUCTION

In the reinforcement learning (RL) problem, an agent is trained to solve an environment cast as a
Markov decision process (MDP), specified as a tuple of states, actions, transition probabilities, and
rewards: (S,A, P, r). By definition, time is discretized, and the agent must learn which states and
actions lead to the best rewards without prior knowledge of P . In many interesting RL problems,
however, the agent receives an observation, xt = o(st) ∈ X , which does not completely specify
the state of the MDP at that time step, resulting in partial observability. Therefore, for partially
observable Markov decision processes (POMDPs) (Astrom, 1965; Kaelbling et al., 1998), a focus
of agent design is how to integrate the sequence of historical observations (x0, x1, . . . , xt) to best
approximate the state st and produce a policy πt to maximise future rewards. In deep RL, recurrent
neural networks (RNNs) allow integrating observations over time with constant computational com-
plexity (Mnih et al., 2016). Agents based on traditional recurrent networks, e.g. LSTMs (Hochreiter
& Schmidhuber, 1997), are widely effective, but they sometimes struggle to learn in more complex
environments, especially those requiring long-term memory.

In this paper, we introduce a recurrent agent architecture, and associated auxiliary losses (Jaderberg
et al., 2016), which aim to improve RL in partially observable environments, particularly those
requiring long-term memory. Our method builds upon existing recurrent agents by injecting priors
into both the structure of the agent and the optimisation objective of the agent. Specifically, we
introduce a slowly ticking recurrent core to augment the standard fast ticking agent core – this
allows a pathway for long-term memory storage and eases the backwards flow of gradients over
long time spans. In addition, we construct two auxiliary policies, the first of which is required to use

∗Work done while at DeepMind, London, UK.

1



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

xt xt+1 xt+2 xt+3

⇡t ⇡t+1 ⇡t+2 ⇡t+3

(a) Regular Recurrent Agent Core

xt xt+1 xt+2 xt+3

xt xt+1 xt+2 xt+3

⇡t ⇡t+1 ⇡t+2 ⇡t+3

⇡0
t+1 ⇡0

t+2 ⇡0
t+3⇡0

t

⇡00
t ⇡00

t+1 ⇡00
t+2 ⇡00

t+3

(c) Full PPR Agent Core with Auxiliary Losses

xt xt+1 xt+2 xt+3

⇡t ⇡t+1 ⇡t+2 ⇡t+3

(b) Minimal Temporal Hierarchical Agent Core

Reaction

Prediction

Perception

Laux =
X

t

d(⇡t,⇡
0
t) + d(⇡t,⇡

00
t ) + d(⇡0

t,⇡
00
t )

ht�1 ht+3

Figure 1: (a) A regular recurrent agent core (Mnih et al., 2016) which can integrate historical experience of
observations xt using an RNN to produce a policy πt. (b) A minimal temporal hierarchical agent core, featuring
fast- and slow-ticking recurrences (Jaderberg et al., 2018). The slow-ticking core skips large portions of time,
facilitating BPTT. (c) The PPR agent recurrent structure introduced in this paper, featuring a slow-ticking core
and three fast-ticking cores. The perception and prediction fast-ticking branches have different information
hidden relative to the reaction fast-ticking core, which has full information and produces the behaviour policy.
All fast cores can share the same NN weights. An auxiliary loss Laux encourages the fast-ticking branches to
predict the same policy with different information, where d is the symmetrized Kullback-Leibler Divergence.

only current observations without long-term memory (perception), and the second which must only
use the long-term memory without current observations (prediction). These auxiliary policies are
trained jointly with the full information policy (reaction), with all three policies regularizing each
other and shaping the representation of the slow-ticking recurrent core.

We evaluate this agent, dubbed the Perception-Prediction-Reaction agent (PPR) on a suite of experi-
ments on 3D, partially observable environments (Beattie et al., 2016), and show consistent improve-
ment compared to strong baselines, in particular on tasks requiring long-term memory. Ablation
studies highlight the efficacy of each of the structural priors introduced in this paper. Finally, we ap-
ply this agent to the challenging DMLab-30 domain (one agent which must learn across 30 different
POMDPs simultaneously), and show that even in this highly varied RL domain, the PPR agent can
improve performance.

2 THE PERCEPTION-PREDICTION-REACTION AGENT

This section introduces the structural and objective priors which constitute the PPR agent. We start
with background on recurrent neural network-based agents for reinforcement learning.

Reinforcement Learning and Recurrent Agents. In an MDP, the goal of the RL agent is to find a
policy over actions, π(at|st), conditioned on the state, that maximizes the expected discounted sum
of future rewards, Est,at∼π,P [

∑∞
t=0 γ

trt]. The objective remains the same under partial observabil-
ity, only the agent must additionally estimate the state using incomplete information gleaned from
observations, xt = o(st) ∈ X .

In POMDPs, recurrent agents can improve their internal understanding of the current state by carry-
ing information from past observations, (x0, x1, . . . , xt−1), in an internal state, ht−1, to complement
the current observation, xt. The agent updates its internal state by ht = f(xt, ht−1), and the result-
ing policy receives conditioning as π(at|ht), see Figure 1 (a). Training by backpropagation through
time (BPTT) (Webros, 1990; Rumelhart et al., 1988) allows rewards to influence the processing of
observations and internal state over earlier time steps. Sophisticated recurrent functions, f , can ex-
tend the agent’s ability to handle longer (and hence more difficult) sequences. LSTM-based agents

2



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

have succeeded in a range of partially observable environments, including ones with rich visual ob-
servations (Mnih et al., 2016; Espeholt et al., 2018), but many such tasks remain difficult to master
or are learned slowly with the traditional architecture.

Minimal Temporally Hierarchical Agent. Temporal hierarchy promises to further improve the
processing of long sequences by dividing responsibilities for short- and long-term memory over
different recurrent cores, simplifying the roles of each. One conspicuous approach is to employ
an additional recurrent unit operating at a rate slower than the MDP – this reduces the number of
intermediate computations between distant time steps and allows error gradients to skip backwards
through large portions of time. An example incarnation of this concept is in Figure 1 (b): the slow
core advances every τ time steps (depicted is τ = 3); during the interim it provides a fixed output to
modulate the fast core; the fast core provides summary information to the slow core. As depicted,
the recurrence equations could take the following form:

hSt =

{
fS(h

F
t−1, h

S
t−1) if t mod τ = 0

hSt−1 otherwise
hFt =

{
fF (xt, h

S
t , ∅) if t mod τ = 0

fF (xt, h
S
t , h

F
t−1) otherwise

(1)

where the superscripts S and F denote slow and fast cores, respectively, hSt , h
F
t are the recurrent

states, xt is the observation, and ∅ denotes a vector of zeros (i.e. the initial recurrent state). The
policy could generically depend on the recurrent states, πt = g(hFt , h

S
t ) (in our case g is an MLP).

The internal state of the fast core is periodically reset to ∅ so as to divide memory responsibilities
by time-scale; all information originating prior to τbt/τc must have routed through the slow core.
Even so, training this minimal hierarchical agent does not on its own guarantee efficient training
long-term memory in a way that improves overall learning relative to the flat agent, see ablations in
Figure 3 (b). Indeed, previous examples of temporally hierarchical agents (Vezhnevets et al., 2017;
Jaderberg et al., 2018) introduce auxiliary objectives to best make use of this hierarchical structure.

Auxiliary Policy Priors. The PPR Agent is depicted in Figure 1 (c), and we build its description
starting from the minimal hierarchical agent. First, we eliminate the possibility of a trivial feed-
through connection from fast-slow-fast. Rather than attempt a partial information bottleneck, we
prevent the fast core (now, reaction) which receives input from the slow core, from passing any
output back to it. We introduce another fast ticking core (perception) which feeds its output into the
slow core but does not take input from it. Resetting the fast internal states at the interval τ forms
branches in the graph. The reaction branch produces the agent’s policy by integrating new obser-
vations together with the slow core’s output. The slow core assumes a central role in representing
information originating prior to τbt/τc, as it receives periodic, short-term summaries from the per-
ception branch, which also integrates observations. This forms a Perception-Reaction Agent without
auxiliary losses, a baseline in our ablation experiments.

The final architectural element of the PPR Agent is an additional fast recurrent core (prediction).
It branches simultaneously to reaction and receives the slow core’s output and possibly partial ob-
servations pt (e.g. previous actions). This creates an information asymmetry (as in Galashov et al.
(2018)) against perception, which lacks long-term memory, and the fully-informed reaction. We
leverage the asymmetry to simultaneously (a) shape the representation of the slow-ticking core,
(b) maximize information extraction from observations, and (c) balance the importance of both in
the policy. We do so by drawing auxiliary policies, π′ and π′′ from the perception and prediction
branches, respectively, to form the auxiliary loss:

Laux =
∑

t

d(πt, π
′
t) + d(πt, π

′′
t ) + d(π′t, π

′′
t ) (2)

where d is a statistical distance – we use the symmetrized Kullback-Leibler Divergence. All three
branches are regularized against each other; Laux encourages their policies to agree to the extent
possible despite differences in access to information. Rather than apply a loss directly on the re-
current state, which may assume somewhat arbitrary values, the policy distribution space offers
grounding in the environment.

The recurrence update and policy equations of the PPR Agent are summarized in Table 1. Loosely
speaking, reaction is a short-term sensory-motor loop, perception a sensory loop, prediction a motor
loop, and the slow core a long-term memory loop, all of which are decoupled in forward operation.
The auxiliary divergence losses can be seen as imposing two priors on the fully informed reaction

3



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

Table 1: Recurrence and policy equations of the PPR Agent.

Core Recurrence Equation Policy
if t mod τ = 0: otherwise:

Slow hS
t = {fS(h′t, hS

t−1; θ
S), hS

t−1}
Reaction ht = {f(xt, hS

t , ∅; θ), f(xt, h
S
t , ht−1; θ)} πt = g(ht; φ)

Prediction h′′t = {f(pt, hS
t , ∅; θ), f(pt, h

S
t , h

′′
t−1; θ)} π′′t = g(h′′t ; φ

′′)

if t mod τ = 1: otherwise:

Perception h′t = {f(xt, ∅, ∅; θ), f(xt, ∅, h′t−1; θ)} π′t = g(h′t; φ
′)

branch – that the policy should be expressible from only recent observations (perception) and from
only long-term memory (prediction).

Implementation. The partial observations pt may be chosen somewhat arbitrarily, but might re-
quire special care to enable useful regularization. For visual environments, the recurrent A3C Agent
(Mnih et al., 2016) suggests a convenient delineation: the partial observation consists of the previ-
ous action and reward in the environment, pt = (at−1, rt−1), which supplement the screen image
(processed through a CNN) to make the full observation.

In practice, the PPR architecture is implemented as a self-contained recurrent neural network core,
and training only requires an additional loss term, allowing the agent to be easily incorporated in
most existing deep RL frameworks. In our experiments we found it possible to use the same network
weights for the recurrences all branches, as reflected in Table 1.

3 RELATED WORK

Recurrent networks with multiple time-scales have appeared in numerous forms for supervised
learning on sequences. Clockwork RNNs (Koutnı́k et al., 2014) and Phased LSTMs (Neil et al.,
2016), for example, mainly address the propagation of long-term dependencies by assigning differ-
ent operating periods within one layer. Hierarchical Multiscale RNNs (El Hihi & Bengio, 1996;
Schmidhuber, 1992; Chung et al., 2016) instead introduce operations allowing layers in a stacked
RNN to influence temporal behavior of higher layers, for a learnable hierarchy.

In reinforcement learning, our work relates to the FTW agent of (Jaderberg et al., 2018). The FTW
agent features a slow ticking and fast ticking core, similar to what is depicted in Figure 1 (b), and
includes a prior to regularize the hidden state distribution between the slow and fast cores. Our work
also builds on recent approaches to learning priors with information asymmetry for RL (Galashov
et al., 2018; Teh et al., 2017). Other work utilises memory modules in agents for better learning
through time (Miconi et al., 2018; Hung et al., 2018), and a wealth of previous work exists on more
explicit hierarchical RL which often exploits temporal priors (Sutton et al., 1999; Heess et al., 2016;
Vezhnevets et al., 2017).

4 EXPERIMENTS

We conducted experiments seeking to answer the questions: (a) does the PPR hierarchy lead to
improved (or worsened) learning relative to flat architectures, and if so, (b) which kind of tasks is it
most effective at accelerating, and (c) what are the effects of different components of the architecture.
We report here experiments on levels within the DMLab-30 suite (Beattie et al., 2016). It includes
a collection of visually rich, 3D environments for a point-body agent with a discrete action space.
The range of tasks vary in character from memory-, navigation-, and reactive agility-based ones.
Language-based tasks are also included. Agent training details can be found in the Appendix.

DMLab Individual Levels. We tested PPR agents on 12 DMLab levels. For each level, we trained
a PPR and a baseline agent for 2 billion environment frames. Figure 2 highlights some of the re-

4



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

0.0 0.5 1.0 1.5 2.0
Frames 1e9

10

0

10

20

30

40

50

60

70

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Level: emstm_non_match

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

10

20

30

40

50

60

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Level: emstm_watermaze

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

50

100

150

200

250

300

350

400

450

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Level: nav_maze_random_goal_03

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

20

40

60

80

100

120

140

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Level: lt_hallway_slope

Baseline PPR

Figure 2: Learning curves of the PPR agent (blue) compared to the baseline recurrent agent (black) (Es-
peholt et al., 2018) on four representative DMLab tasks. The PPR agent can achieve higher scores
and faster learning on long-term memory tasks (e.g. emstm non match, emstm watermaze,
nav maze random goal 03), while not degrading in performance on more reactive tasks, such as
lasertag (lt hallway slope). More levels can be found in the Appendix.

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e10

0

10

20

30

40

50

60

70

80

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Normalized Elo (Cap 100)

Baseline PPR

(a) (b) (c)

Figure 3: (a) Learning curves on the DMLab-30 task domain with the PPR agent (blue) and recurrent agent
baseline (black) (Espeholt et al., 2018). The PPR agent consistently outperforms the Impala (Espeholt et al.,
2018) on this challenging domain. (b) Ablation study on losses. (c) Ablation study on time periods.

sults. Compared to the baseline, the PPR agent showed significantly faster learning and significantly
higher return on tasks by exhibiting long-term memory, and did not degrade performance on more
reactive tasks. The full results are available in the Appendix.

DMLab-30. We next tested the PPR agent on simultaneously learning the entire DMLab-30 suite,
to see whether benefits could extend across the range of tasks while under the same hyperparameters.
Indeed, the PPR agent outperformed the flat LSTM baseline, achieving an average capped human-
normalized ELO across levels of 72.0 mean (across 8 independent runs), compared to 64.3% with
the baseline (Espeholt et al., 2018), Figure 3. Per-level scores from these learning runs can be found
in the Appendix. This difference, while modest, is difficult to achieve compared to the highly tuned
baseline agent and represents a significant improvement.

Ablations. To determine the effects of individual components of the PPR agent, including the
auxiliary losses, we returned to experimenting on individual levels. Figure 3 (b) shows different
combinations of the three PPR auxiliary loss terms activated. The predictive branch, which is only
trained via the auxiliary loss, is revealed to be crucial to the learning gains. Although using two
of the three losses can be effective, in general we measured more consistent results with all three
active. Figure 3 (c) shows the results from different values for the slow ticking core interval, τ . In
this task, a wide range of values worked well (shown: 4, 8, 16, 24, 32), with τ ≥ 16 working best.

Flat, Predictive Agent. Given the benefit the prediction branch brings to the PPR Agent, it is
worth studying the flat baseline agent Figure 1 (a) with a prediction branch and auxiliary regularisa-
tion loss. We trained such an agent on individual DMLab levels. We found that in navigation levels,
for example, it was possible to run the policy drawn from the prediction branch (i.e. short-horizon
open-loop controls) and achieve scores similar to the baseline agent (see Appendix for details). De-
spite succeeding at policy prediction, we discovered no such agent to learn faster or better than the
baseline. Evidently, the full PPR Agent is needed to accelerate learning.

5



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

5 CONCLUSION

In this paper we introduced a new agent to deal with partially observable environments, the PPR
agent, which incorporates a temporally hierarchical recurrent structure, as well as imposing priors
on the behaviour policy to be both predictable from long-term memory only, and from current ob-
servations only. This agent was evaluated on a challenging set of 3D RL problems, and showed
improved performance, in particular on tasks involving long-term memory. We hope to build upon
these ideas to further improve deep RL in partially observable environments in future work.

REFERENCES

Karl J Astrom. Optimal control of markov processes with incomplete state information. Journal of
mathematical analysis and applications, 10(1):174–205, 1965.

Mayank Bansal, Alex Krizhevsky, and Abhijit S. Ogale. Chauffeurnet: Learning to drive by
imitating the best and synthesizing the worst. CoRR, abs/1812.03079, 2018. URL http:
//arxiv.org/abs/1812.03079.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Ander-
son, Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis
Hassabis, Shane Legg, and Stig Petersen. Deepmind lab. CoRR, abs/1612.03801, 2016. URL
http://arxiv.org/abs/1612.03801.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural net-
works. arXiv preprint arXiv:1609.01704, 2016.

Salah El Hihi and Yoshua Bengio. Hierarchical recurrent neural networks for long-term depen-
dencies. In Proceedings of Annual Conference on Neural Information Processing Systems, pp.
493–499, 1996.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IM-
PALA: scalable distributed deep-rl with importance weighted actor-learner architectures. CoRR,
abs/1802.01561, 2018. URL http://arxiv.org/abs/1802.01561.

Alexandre Galashov, Siddhant M Jayakumar, Leonard Hasenclever, Dhruva Tirumala, Jonathan
Schwarz, Guillaume Desjardins, Wojciech M Czarnecki, Yee Whye Teh, Razvan Pascanu, and
Nicolas Heess. Information asymmetry in kl-regularized rl. 2018.

Nicolas Heess, Gregory Wayne, Yuval Tassa, Timothy P. Lillicrap, Martin A. Riedmiller, and David
Silver. Learning and transfer of modulated locomotor controllers. CoRR, abs/1610.05182, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico Carnevale,
Arun Ahuja, and Greg Wayne. Optimizing agent behavior over long time scales by transporting
value. arXiv preprint arXiv:1810.06721, 2018.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, and
Koray Kavukcuoglu. Population based training of neural networks. CoRR, abs/1711.09846,
2017. URL http://arxiv.org/abs/1711.09846.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in first-person multiplayer games with population-based deep reinforcement
learning. arXiv preprint arXiv:1807.01281, 2018.

6

http://arxiv.org/abs/1812.03079
http://arxiv.org/abs/1812.03079
http://arxiv.org/abs/1612.03801
http://arxiv.org/abs/1802.01561
http://arxiv.org/abs/1711.09846


Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting
in partially observable stochastic domains. Artif. Intell., 101(1-2):99–134, May 1998. ISSN
0004-3702. doi: 10.1016/S0004-3702(98)00023-X. URL http://dx.doi.org/10.1016/
S0004-3702(98)00023-X.

Jan Koutnı́k, Klaus Greff, Faustino Gomez, and Jürgen Schmidhuber. A clockwork rnn. In Pro-
ceedings of the 31st International Conference on International Conference on Machine Learning
- Volume 32, ICML’14, pp. II–1863–II–1871. JMLR.org, 2014. URL http://dl.acm.org/
citation.cfm?id=3044805.3045100.

Thomas Miconi, Jeff Clune, and Kenneth O. Stanley. Differentiable plasticity: training plastic neural
networks with backpropagation. CoRR, abs/1804.02464, 2018. URL http://arxiv.org/
abs/1804.02464.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased lstm: Accelerating recurrent network
training for long or event-based sequences. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, NIPS’16, pp. 3889–3897, USA, 2016. Curran Asso-
ciates Inc. ISBN 978-1-5108-3881-9. URL http://dl.acm.org/citation.cfm?id=
3157382.3157532.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations
by error propagation. 1988.

Jürgen Schmidhuber. Learning complex, extended sequences using the principle of history com-
pression. Neural Computation, 4(2):234–242, 1992.

Richard S. Sutton, Doina Precup, and Satinder P. Singh. Between MDPs and Semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181–
211, 1999. doi: 10.1016/S0004-3702(99)00052-1.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas
Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 4496–4506, 2017.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
Proceedings of International Conference on Machine Learning, pp. 3540–3549, 2017.

P J Webros. Backpropagation through time: What it does and how to do it. 1990.

7

http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://dl.acm.org/citation.cfm?id=3044805.3045100
http://dl.acm.org/citation.cfm?id=3044805.3045100
http://arxiv.org/abs/1804.02464
http://arxiv.org/abs/1804.02464
http://dl.acm.org/citation.cfm?id=3157382.3157532
http://dl.acm.org/citation.cfm?id=3157382.3157532


Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

Appendix

A AGENT AND TRAINING DETAILS

In our experiments, we used LSTM recurrent cores with hidden size 256 and shared weights among
the three fast branches. We trained our agents and baseline using the V-Trace algorithm (Espeholt
et al., 2018) on trajectory segments 100 agent time steps long, using action repeat 4. We introduced
extra hyperparemeters for the auxiliary loss weightings, one for each branch-pair, and included these
in the set of hyperparameters tuned by Population-based training (PBT) (Jaderberg et al., 2017).
Each experiment used a population size of 24. For visual levels, our convolution network was an
15-layer residual network. We typically fixed the slow core interval, τ , to 16. Our baselines all used
an identical architecture with a flat LSTM core for memory as in Espeholt et al. (2018).

Earlier experiments in reactive tasks, such as laser tag, did sometimes result in degraded perfor-
mance due to a learning mode in which the policy became less dynamic, to be easier to predict. One
effective way to mitigate this phenomenon is to apply Laux to only a (random) subset of training
batches (found concurrently in (Bansal et al., 2018)), leaving the policy more free to pursue re-
wards. After experimenting with different ways to achieve this, we found rescaling Laux by a factor
randomly sampled from U(0, 1) each batch worked best. This was used in all our experiments.

B ADDITIONAL LEARNING CURVES

0.0 0.5 1.0 1.5 2.0
Frames 1e9

10

0

10

20

30

40

50

60

70

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Level: emstm_non_match

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

10

20

30

40

50

60

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Level: emstm_watermaze

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

20

40

60

80

100

120

140

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Level: lt_hallway_slope

0.0 0.5 1.0 1.5 2.0
Frames 1e9

20

0

20

40

60

80

100

120

140

160

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Level: lt_horseshoe_color

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

50

100

150

200

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Level: nav_maze_random_goal_01

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

50

100

150

200

250

300

350

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Level: nav_maze_random_goal_02

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

50

100

150

200

250

300

350

400

450

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Level: nav_maze_random_goal_03

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

20

40

60

80

100

120

140

160

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Level: nav_maze_static_01

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

50

100

150

200

250

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Level: nav_maze_static_02

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

100

200

300

400

500

600

700

800

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Level: nav_maze_static_03

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

10

20

30

40

50

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Level: seekavoid_arena_01

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

20

40

60

80

100

120

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Level: stairway_to_melon

Baseline PPR

Figure 4: Learning curves of the PPR agent (blue) compared to the baseline recurrent agent (black) (Espeholt
et al., 2018) on various individual DMLab tasks.

8



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

Figure 5: Learning curves on the DMLab-30 task domain with the PPR agent (blue) and recurrent agent
baseline (black), separated by level. Shaded area shows the mean standard error. The PPR agent consistently
outperforms the baseline Espeholt et al. (2018) on this challenging domain.

9



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

C FLAT, PREDICTIVE AGENT

We trained a flat, prediction agent on the DMLab navigation level rat goal driven large
using various different schemes drawing from the prediction policy during training (“Yes MP Sam-
ples”) or not (“No MP Samples”). We evaluated final agent performance under different execution
schemes, as well. Figure 6 (a) shows agents executing the prediction policy up to 3 time steps be-
yond the last injection of new observational information from the main LSTM; agent score is barely
diminished. Figure 6 (b) shows the same trained agents evaluated at longer delays, up to 7 steps. The
high performance of these agents proves successful learning of the prediction auxiliary policy over
similar time scales used in our studies of the PPR Agent, yet in no case did we observe it to improve
on the base agent’s learning. This level most closely corresponds to nav maze random goal 03,
in which PPR showed improvements, see Figure 2. Figure 6 (c) shows a baseline agent trained with
the standard frame-skip (4), and one with longer frame-skip (32), with correspondence to the delay
in 6 (b), for comparison. The performance of the longer frame-skip agent suffered due to larger
granularity in environment interaction frequency, despite having the same refresh rate/delay for in-
corporating new observations into the policy.

(a) (b) (c)

Figure 6: Final evaluation scores for trained flat, prediction agent in rat goal driven large. Various
schemes used for drawing the behavior policy from the prediction auxiliary policy, many of which perform
similarly to the baseline (reactive) agent. (a) Agents executing prediction policy up to 3 time steps without new
observations. (b) The same trained agents, but evaluated up to 7 time steps without new observations. (c) Long
action-repeat trained agent.

10


	Introduction
	The Perception-Prediction-Reaction Agent
	Related Work
	Experiments
	Conclusion
	Agent and Training Details
	Additional Learning Curves
	Flat, Predictive Agent

