
Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

EXPLOITING HIERARCHY FOR LEARNING AND
TRANSFER IN KL-REGULARIZED RL

Dhruva Tirumala, Hyeonwoo Noh ∗, Alexandre Galashov, Leonard Hasenclever,
Arun Ahuja, Greg Wayne, Razvan Pascanu, Yee Whye Teh & Nicolas Heess
DeepMind
6 Pancras Square
Kings Cross, London, UK
dhruvat@google.com; shgusdngogo@postech.ac.kr

ABSTRACT

As reinforcement learning agents are tasked with solving more challenging and
diverse tasks, the ability to incorporate prior knowledge into the learning system
and the ability to exploit reusable structure in solution space is likely to become
increasingly important. The KL-regularized expected reward objective constitutes
a convenient tool to this end. It introduces an additional component, a default or
prior behavior, which can be learned alongside the policy and as such partially
transforms the reinforcement learning problem into one of behavior modelling.
In this work we consider the implications of this framework in case where both
the policy and default behavior are augmented with latent variables. We discuss
how the resulting hierarchical structures can be exploited to implement different
inductive biases and how the resulting modular structures can be exploited for
transfer. Empirically we find that they lead to faster learning and transfer on a
range of continuous control tasks.

1 INTRODUCTION

Reinforcement learning approaches, coupled with neural networks as function approximators, have
solved an impressive range of tasks, from complex control tasks (Lillicrap et al., 2016; Heess et al.,
2017; Riedmiller et al., 2018; Levine et al., 2016; OpenAI et al., 2018) to computer games (Mnih
et al., 2015; OpenAI, 2018) and Go (Silver et al., 2016). Recent advances have greatly improved data
efficiency, scalability, and stability of algorithms in a variety of domains (Rennie et al., 2017; Zoph &
Le, 2017; Espeholt et al., 2018; Ganin et al., 2018; Zhu et al., 2018).

Nevertheless, many tasks remain challenging to solve and require large numbers of interactions with
the environment. While the reasons can be hard to pin down they frequently have to do with the fact
that solutions are unlikely to be found efficiently by chance when no prior knowledge is available, or
that the solution space is dominated by sub-optimal local minima in terms of returns or other desired
properties of the behaviour that are somehow not captured by rewards.

The KL-regularized objective (Todorov, 2007; Kappen et al., 2012; Rawlik et al., 2012; Schulman
et al., 2017) creates a connection between RL and probabilistic models. It introduces a second
component, a prior or default behaviour, and the policy is then encouraged to remain close to it in
terms of the Kullback-Leibler (KL) divergence – which can be used to influence the learned policy.
Recently, within this framework, (Teh et al., 2017; Czarnecki et al., 2018; Galashov et al., 2019) have
proposed to learn a parameterized default policy in the role of a more informative prior.

These works suggest an elegant solution for enforcing complex biases that can be also learned or
transferred from different tasks. And the objective provides much flexibility in terms of model and
algorithm choice. In this work we extend this line of thought, considering the scenario when both the
default policy and the agent are hierarchically structured and augmented with latent variables. This
provides new mechanisms for restricting the information flow and introducing inductive biases. In
addition, we also explore how the resulting modular policies can be used in transfer learning scenarios.
∗Equal contribution. Work done during internship with co-affiliation to POSTECH, Korea

1

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

Figure 1: Diagram of the generic structure of the
regularized KL-objective considered. (a) shows
an unstructured policy, where information asym-
metry (e.g. hiding task instance information) is
exploited to induce a meaningful default policy
π0 (Galashov et al., 2019); (b) shows the scenario
when we use structured policies composed from
high-level πH and low-level πL policies that com-
municate through the latent action z. Note that
now different forms of information asymmetry can
be employed. See text for more details.

We provide empirical results on several tasks with physically simulated bodies and continuous action
spaces, highlighting the role of the structured policies.

2 RL AS PROBABILISTIC MODELLING

In this section, we will provide an overview of how the KL-regularized objective connects RL
as probabilistic model learning, before developing our approach in the next section. We start by
introducing some standard notation. We will denote states and actions at time t respectively with st
and at. r(s, a) is the instantaneous reward received in state s when taking action a. We will refer to
the history up to time t as xt = (s1, a1, .., st) and the whole trajectory as τ = (s1, a1, s2, a2, . . .).
The agent policy π(at|xt) denotes a distribution over next actions given history xt, while π0(at|xt)
denotes a default or habitual policy. The KL-regularized RL objective (Todorov, 2007; Kappen et al.,
2012; Rawlik et al., 2012; Schulman et al., 2017) takes the form:

L(π, π0) = Eτ
[∑

t≥1 γ
tr(st, at)− αγtDKL(at|xt)

]
(1)

where we use a convenient notation1 for the KL divergence: DKL(at|xt) = Eπ(at|xt)[log
π(at|xt)
π0(at|xt)],

γ is the discount factor and α is a hyperparameter controlling the relative contributions of both terms.
Eτ [·] is taken with respect to the distribution over trajectories defined by the agent policy and system
dynamics: p(s1)

∏
t≥1 π(at|xt)p(st+1|st, at).

π0 can be used to inject detailed prior knowledge into the learning problem. In a transfer scenario π0
can be a learned object, and the KL term plays effectively the role of a shaping reward. π and π0 can
also be co-optimized. In this case the relative parametric forms of π0 and π are of importance. The
optimal π0 in eq. equation 1 is

π∗0(at|xt) = argmax
π0

Eπ(a|xt)[log π0(a|xt)]. (2)

(Galashov et al., 2019) details further the interplay between π and π0.

3 HIERARCHICALLY STRUCTURED POLICIES

Our approach decomposes policies into high-level and low-level components which interact via
auxiliary latent variables. Let zt be a (continuous) latent variable for each time step t. The agent
policy is extended as π(at, zt|xt) = πH(zt|xt)πL(at|zt, xt) and likewise for the default policy π0. zt
can be interpreted as a high-level or abstract action, taken according to the high-level (HL) controller
πH , and which is translated into low-level or motor action at by the low-level (LL) controller πL.
We extend the histories xt and trajectories τ to appropriately include zt’s. Structuring a policy into
HL and LL controllers has been studied (e.g. Heess et al., 2016; Hausman et al., 2018; Haarnoja
et al., 2018a; Merel et al., 2019), but the concept of default policy has not been widely explored in
this context.

In case zt’s can take on many values or are continuous, the objective equation 1 becomes intractable
as the marginal distributions π(at|xt) and π0(at|xt) in the KL divergence cannot be computed in

1In the following, DKL(Y |X) always denotes Eπ(Y |X)[log
π(Y |X)
π0(Y |X)

] for arbitrary variables X and Y .

2

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

closed form. This problem can be addressed in different ways. For simplicity and concreteness we
here assume that the latent variables in π and π0 have the same dimension and semantics. We can
then construct a lower bound for the objective by using the following upper bound for the KL:

DKL(at|xt) ≤DKL(zt|xt) + Eπ(zt|xt)[DKL(at|zt, xt)], (3)
which is tractably approximated using Monte Carlo sampling. Note that:

DKL(zt|xt) = DKL

(
πH(zt|xt)‖πH0 (zt|xt)

)
DKL(at|zt, xt) = DKL

(
πL(at|zt, xt)‖πL0 (at|zt, xt)

)
.

The resulting lower bound for the objective is:

L(π, π0) ≥ Eτ
[∑

t≥1 γ
tr(st, at)− αγtDKL(zt|xt)− αγtDKL(at|zt, xt)

]
. (4)

Additionally, we consider sharing low-level controllers in both the agent and the default policy, i.e.
πL(at|zt, xt) = πL0 (at|zt, xt), for faster learning. This results in a new lower bound:

L(π, π0) ≥ Eτ
[∑

t≥1 γ
tr(st, at)− αγtDKL(zt|xt)

]
(5)

Note that this objective function is similar in spirit to current KL-regularized RL approaches discussed
in Section 2, except that the KL divergence is between policies defined on abstract actions zt as
opposed to concrete actions at. The effect of this KL divergence is that it regularizes both the HL
policies as well as the space of behaviours parameterised by the abstract actions.

3.1 INFORMATION ASYMMETRIES AND PARAMETRIZATION

We rely on information asymmetry to impose the separation between HL and LL controllers (see
Figure 1). Specifically we introduce a separation of concerns between πL and πH by providing full
information only to πH while information provided to πL is limited. In our experiments we vary the
information provided πL; it receives body-specific (proprioceptive) information as well as different
amounts of environment-related (exteroceptive) information. The task is only known to πH . Hiding
task specific information from the LL controller makes it easier to transfer across tasks. It forces πL
to focus on learning task agnostic behaviour, and to rely on the abstract actions selected by πH to
solve the task.

Similarly, we hide task specific information from πL0 , regardless of parameter sharing strategy for
LL controllers. Since we also limit the information available to πH0 , this setup implements a
similar default behaviour policy π0(at|xt) as in (Galashov et al., 2019), which can be derived by
marginalizing the latents

∫
zt
πH0 (zt|xt)πL0 (at|zt, xt)dzt.

In the experiments we further consider transferring the HL controller across bodies, in situations
where the abstract task is the same but the body changes. Here we additionally hide body-specific
information from πH , so that the HL controller is forced to learn body-agnostic behaviour.

For LL default policy, we use identical parametric forms to implement πL and πL0 , regardless of
parameter sharing strategy. The specific form of LL controller depends on the experiments. The
remaining freedom lies in the choice of the default HL controller πH0 (zt|xt). Here, we consider the
following choices:

Independent isotropic Gaussian We define the default HL policy as πH0 (zt|xt) = N (zt|0, 1).

AR(1) process πH0 (zt|xt) = N (zt|αzt−1,
√
1− α2), i.e. the default HL policy is a first-order auto-

regressive process with a fixed parameter 0 ≤ α < 1 chosen to ensure a marginal distributionN (0, 1).
This allows for more structured temporal dependence among the abstract actions.

Learned AR prior Similar to the AR(1) process this default HL policy allows zt to depend on zt−1
but now the high-level default policy is a Gaussian distribution with mean and variance that are
learned functions of zt−1 with parameters φ: πH0 (zt|xt) = N (zt|µφ(zt−1), σ2

φ(zt−1)).

4 TRANSFER LEARNING

The hierarchical structure introduces a modularity of the policy and default policy, which can be
utilized for transfer learning. We consider two transfer scenarios: 1) task transfer where we reuse the

3

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

Figure 2: Bodies and tasks for experiments. Left: All considered bodies. Right: Example tasks.

Figure 3: Speed up for learning complex tasks from scratch. Left: Go to 1 of 3 targets with the
Ant. Center: Move a single box to a single target with the Ant. Right: Move 2 boxes to 2 targets
with the Ball. The proposed model is denoted with the type of HL default policy: Isotropic Gaussian,
AR-1, AR-Learned.

learned default policy to solve novel tasks with different goals, and 2) body transfer, where transfering
the body agnostic HL controller and default policy to another body.

Task transfer For task transfer, we consider task distributions whose solutions exhibit significant
shared structure, e.g. because solution trajectories can be produced by a common set of skills or
repetitive behaviour. If the default policy can capture and transfer this reusable structure it will
facilitate learning similar tasks. Transfer then involves specializing the default behavior to the needs
of the target task (e.g. by directing locomotion towards a goal). We reuse pretrained goal agnostic
components, including the HL default policy πH0 and the LL default policy πL0 , and learn a new HL
controller πH for a target task. In general, we set the LL controller πL identical to the LL default
policy, but for some tasks we allow πL to diverge from πL0 . Similarly e.g. to Heess et al. (2016);
Hausman et al. (2018), the new HL controller πH learns to manipulate the LL controller πL by
modulating and interpolating the latent space, while being regularized by πH0 .

Body transfer Our formulation can also be used for transfer between different bodies which share
common behaviour structures for the same task distribution. To transfer the HL structure of a
goal-specific behaviour, we reuse the pretrained body-agnostic components, HL controller πH(zt|xt)
and the default policy πH0 (zt|xt), and learn a new body-specific LL controller πL(at|zt, xt). The
transferred HL components provide goal-specific behaviour actuated on the latent space, which can
then be instantiated by learning a new LL controller.

5 EXPERIMENTS

We evaluate our method in several environments with continuous action space and states. We consider
a set of structured, sparse reward tasks that can be executed by multiple bodies with different degrees
of freedom. The tasks and bodies are illustrated in Figure 2. Details of tasks and bodies used in
experiments are described in Appendix C

Learning from scratch We first study whether KL regularization with the proposed structure
and parameterization benefits end-to-end learning. As baselines, we use a policy with entropy

4

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

(a) Task transfer summary (b) Analysis on task transfer results.

Figure 4: Task transfer results. (a) Left: From move box to target to move box to 1 of 3 targets
with Ant. Box position and proprioception are given to LL controller. Right: From move 2 boxes to
2 targets to congregate boxes with Ball. (b) Left: From move box to target task to move box and go
to target with Ant, AR-1. Right: From move box to target to move heavier box with Ant, AR-1. In
all cases, we use shared LL prior during pretraining.

Figure 5: Body transfer with the AR-1 Prior. Column 1: Ball to Ant, Go to 1 of 3 targets. Column
2: Ball to Ant, Move box to target. Column 3: Ant to Quadruped, Go to 1 of 3 targets. Column 4:
Ant to Quadruped, Move box to target.

regularization (SVG-0) and a KL regularized policy with unstructured default policy similar to
Galashov et al. (2019); Teh et al. (2017) (DISTRAL prior). As described in Section 3 we employ a
hierarchical structure with shared LL components as a default setting. The HL controller receives
full information while the LL controller (and hence the default policy) receives proprioceptive
information plus the positions of the box(es) as indicated. The same information asymmetry is
applied to the DISTRAL prior i.e. the default policy receives proprioception plus box positions as
inputs. We explore multiple HL default policies including Isotropic Gaussian, AR(1) process, and
learned AR process. Figure 3 illustrates the results of the experiment. Our main finding is that the
KL regularized objective significantly speeds up learning of complex tasks, and that the hierarchical
approach provides an advantage over the flat, DISTRAL formulation. The gap increases for more
challenging tasks (e.g. move 2 boxes to 2 targets).

Task transfer In the experiments we introduce two baselines. The first baseline, the identical
model learned from scratch (Hierarchical Agent), allows us to assess the benefit of transfer. The
second baseline is transfer with a DISTRAL-style prior, which provides an indication whether the
hierarchical policy structure is beneficial for transfer. Additionally, we compare different types of HL
default policies. Figure 4a illustrates the result of task transfer. Overall, transferring the pretrained
default policy brings significant benefits when learning related tasks. Furthermore the hierarchical
architecture which facilitates parameter reuse performs better than the DISTRAL prior regardless of
type of HL default policy. While sharing the LL is effective for transfer between tasks with significant
overlap, allowing the LL policy to diverge from the LL default policy as in eq. (4) is useful in some
cases. Figure 4b illustrates the result on task transfer scenarios requiring adaptation of skills. Here
the LL policy is only initialized and soft-constrained to the behavior of the LL default policy (via the
KL term in eq. (4)) which allows adapting the LL skills as required for target task.

Body transfer We explore this body transfer setup in continuous environments. We compare
performance to learning the hierarchical policy from scratch and analyze the effects of the KL
regularization. The experimental setup in the continuous case is the same as before, and Figure 5

5

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

provides results for different types of bodies and tasks. Generally transferring the HL component and
relying on both the task reward and the KL term as a dense shaping reward signal for LL controller
works best in these settings.

REFERENCES

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

Wojciech Czarnecki, Siddhant Jayakumar, Max Jaderberg, Leonard Hasenclever, Yee Whye Teh,
Nicolas Heess, Simon Osindero, and Razvan Pascanu. Mix match agent curricula for reinforcement
learning. In Proceedings of the 35th International Conference on Machine Learning, 2018.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances in neural information
processing systems, pp. 271–278, 1993.

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning modular
neural network policies for multi-task and multi-robot transfer. In IEEE International Conference
on Robotics and Automation (ICRA), pp. 2169–2176. IEEE, 2017.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. In Proceedings of the 35th International
Conference on Machine Learning, 2018.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In International Conference on Learning
Representations, 2019.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical reinforce-
ment learning. In International Conference on Learning Representations, 2017.

Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft
updates. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence,
pp. 202–211. AUAI Press, 2016.

Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level discovery of deep options.
CoRR, abs/1703.08294, 2017. URL http://arxiv.org/abs/1703.08294.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared
hierarchies. In International Conference on Learning Representations, 2018.

Alexandre Galashov, Siddhant Jayakumar, Leonard Hasenclever, Dhruva Tirumala, Jonathan Schwarz,
Guillaume Desjardins, Wojtek M. Czarnecki, Yee Whye Teh, Razvan Pascanu, and Nicolas
Heess. Information asymmetry in KL-regularized RL. In International Conference on Learning
Representations, 2019.

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami, and Oriol Vinyals. Synthesizing
programs for images using reinforced adversarial learning. In Proceedings of the 35th International
Conference on Machine Learning, pp. 1666–1675, 2018.

Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, and Sergey Levine. Divide-and-
conquer reinforcement learning. In International Conference on Learning Representations, 2018.

Anirudh Goyal, Riashat Islam, DJ Strouse, Zafarali Ahmed, Hugo Larochelle, Matthew Botvinick,
Sergey Levine, and Yoshua Bengio. Transfer and exploration via the information bottleneck. In
International Conference on Learning Representations, 2019.

Jordi Grau-Moya, Felix Leibfried, and Peter Vrancx. Soft q-learning with mutual-information
regularization. In International Conference on Learning Representations, 2019.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. In
International Conference on Learning Representations, 2017.

6

http://arxiv.org/abs/1703.08294

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning invariant
feature spaces to transfer skills with reinforcement learning. In International Conference on
Learning Representations, 2017.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International Conference on Machine Learning, pp. 1352–1361,
2017.

Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. Latent space policies
for hierarchical reinforcement learning. In Proceedings of the 35th International Conference on
Machine Learning, pp. 1851–1860, 2018a.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning, pp. 1861–1870, 2018b.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on
Learning Representations, 2018.

Nicolas Heess, Gregory Wayne, David Silver, Tim Lillicrap, Tom Erez, and Yuval Tassa. Learning
continuous control policies by stochastic value gradients. In Advances in Neural Information
Processing Systems, 2015.

Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin Riedmiller, and David Silver.
Learning and transfer of modulated locomotor controllers. arXiv preprint arXiv:1610.05182, 2016.

Nicolas Heess, Dhruva Tirumala, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval
Tassa, Tom Erez, Ziyu Wang, Ali Eslami, Martin Riedmiller, et al. Emergence of locomotion
behaviours in rich environments. arXiv preprint arXiv:1707.02286, 2017.

Hilbert J Kappen, Vicenç Gómez, and Manfred Opper. Optimal control as a graphical model inference
problem. Machine learning, 87(2):159–182, 2012.

Sanjay Krishnan, Roy Fox, Ion Stoica, and Ken Goldberg. DDCO: discovery of deep continuous
options forrobot learning from demonstrations. CoRR, abs/1710.05421, 2017. URL http:
//arxiv.org/abs/1710.05421.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
International Conference on Learning Representations, 2016.

Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg Wayne,
Yee Whye Teh, and Nicolas Heess. Neural probabilistic motor primitives for humanoid con-
trol. In International Conference on Learning Representations, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. In Advances in Neural Information Processing Systems, 2016.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. In Advances in Neural Information Processing
Systems, pp. 2775–2785, 2017.

Ofir Nachum, Shixiang (Shane) Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In Advances in Neural Information Processing Systems 31, pp. 3307–3317.
2018.

7

http://arxiv.org/abs/1710.05421
http://arxiv.org/abs/1710.05421

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal representation learning
for hierarchical reinforcement learning. In International Conference on Learning Representations,
2019.

OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. arXiv preprint arXiv:1808.00177, 2018.

Pedro A Ortega and Daniel A Braun. Thermodynamics as a theory of decision-making with
information-processing costs. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 469(2153):20120683, 2013.

Ronald Parr and Stuart J Russell. Reinforcement learning with hierarchies of machines. In Advances
in neural information processing systems, pp. 1043–1049, 1998.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
forcement learning by approximate inference. In Robotics: science and systems, volume 13, pp.
3052–3056, 2012.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava Goel. Self-critical
sequence training for image captioning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7008–7024, 2017.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom van de
Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving
sparse reward tasks from scratch. In Proceedings of the 35th International Conference on Machine
Learning, pp. 4344–4353, 2018.

Jonathan Rubin, Ohad Shamir, and Naftali Tishby. Trading value and information in mdps. Decision
Making with Imperfect Decision Makers, pp. 57–74, 2012.

Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Wojciech M
Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zisserman, Karen Simonyan, et al. Kickstarting
deep reinforcement learning. arXiv preprint arXiv:1803.03835, 2018.

John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft q-learning.
arXiv preprint arXiv:1704.06440, 2017.

Pierre Sermanet, Corey Lynch, Jasmine Hsu, and Sergey Levine. Time-contrastive networks: Self-
supervised learning from multi-view observation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 14–15, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

Susanne Still and Doina Precup. An information-theoretic approach to curiosity-driven reinforcement
learning. Theory in Biosciences, 131(3):139–148, 2012.

Daniel Strouse, Max Kleiman-Weiner, Josh Tenenbaum, Matt Botvinick, and David J Schwab.
Learning to share and hide intentions using information regularization. In Advances in Neural
Information Processing Systems, pp. 10270–10281, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas
Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 4496–4506, 2017.

Stas Tiomkin and Naftali Tishby. A unified bellman equation for causal information and value in
markov decision processes. arXiv preprint arXiv:1703.01585, 2017.

8

https://blog.openai.com/openai-five/

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

Naftali Tishby and Daniel Polani. Information theory of decisions and actions. Perception-Action
Cycle, pp. 601–636, 2011.

Emanuel Todorov. Linearly-solvable markov decision problems. In Advances in Neural Information
Processing Systems, 2007.

Marc Toussaint. Robot trajectory optimization using approximate inference. In Proceedings of the
26th annual international conference on machine learning, pp. 1049–1056. ACM, 2009.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International Conference on Machine Learning, pp. 3540–3549, 2017.

Saining Xie, Alexandre Galashov, Siqi Liu, Shaobo Hou, Razvan Pascanu, Nicolas Heess, and
Yee Whye Teh. Transferring task goals via hierarchical reinforcement learning, 2018. URL
https://openreview.net/forum?id=S1Y6TtJvG.

Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar. Dexterous
manipulation with deep reinforcement learning: Efficient, general, and low-cost. arXiv preprint
arXiv:1810.06045, 2018.

Brian D Ziebart. Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal
Entropy. PhD thesis, Carnegie Mellon University, 2010.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2017.

A ALGORITHM

This section provides more details about the learning algorithm we use to optimize Equation equation 4
in the main text. We employ SVG(0) Heess et al. (2015) with experience replay as a base algorithm
and adapt it to support learning hierarchical policy and prior. Unless otherwise mentioned, we follow
notations from the main paper.

To optimize the hierarchical policy, we follow a strategy similar to Heess et al. (2016) and repa-
rameterize zt ∼ πH(zt|xt) as zt = fH(xt, εt), where εt ∼ ρ(εt) is a fixed distribution. The
fH(·) is a deterministic function that outputs distribution parameters. In practice this means that
the hierarchical policy can be treated as a flat policy π(at|εt, xt) = πL(at|fH(xt, εt), xt). We
exploit the reparameterized flat policy to employ existing distributed learning algorithm with minimal
modification.

We employ distributed version of SVG(0) Heess et al. (2015) augmented with experience replay
and off-policy correction algorithm called Retrace Munos et al. (2016). The SVG(0) reparameterize
a policy p(a|s) and optimize it by backpropagating gradient from a learned action value function
Q(a, s) through a sampled action a.

To employ this algorithm, we reparameterize action from flat policy at ∼ πθ(at|εt, xt) with parameter
θ as at = hθ(εt, xt, ξt), where ξt ∼ ρ(ξt) is a fixed distribution, and hθ(εt, xt) is a deterministic
function outputting the parameters of distribution πθ(at|εt, xt). We also introduce the action value
function Q(at, zt, xt). Unlike policies without hierarchy, we estimate the action value depending
on the sampled action zt as well, so that it could capture the future returns depending on zt. Given
the flat policy and the action value function, SVG(0) Heess et al. (2015) suggests to use following
gradient estimate

∇θEπθ(a|εt,xt)Q(a, zt, xt)

= ∇θEρ(ξ)Q(hθ(εt, xt, ξ), zt, xt)

= Eρ(ξ)
∂Q

∂h

∂h

∂θ
≈ 1

M

M∑
i=1

∂Q

∂h

∂h

∂θ

∣∣∣∣
ξ=ξi

,

(6)

which facilitates using backpropagation. Note that policy parameter θ could be learned through zt as
well, but we decide not to because it tends to make learning unstable.

9

https://openreview.net/forum?id=S1Y6TtJvG

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

To learn action value function Q(at, zt, xt) and learn policy, we use off-policy trajectories from
experience replay. We use Retrace Munos et al. (2016) to estimate the action values from off-policy
trajectories. The main idea behind Retrace is to use importance weighting to correct for the difference
between the behavior policy µ and the online policy π, while cutting the importance weights to reduce
variance. Specifically, we estimate corrected action value with

Q̂Rt = Qt +
∑
s≥t γ

s−t′
(∏t

i=s ci

)
δsQ, (7)

where δsQ = rs+γ(V̂s+1−αDKLs+1)−Qs andQt = Q(at, zt, xt). V̂s = Eπ(a|εt,xt)[Q(a, zt, xt)]

is estimated bootstrap value, DKLs = DKL

[
πH(z|xs)‖πH0 (z|xs)

]
and γ is discount. ci =

λmin
(
π(ai|εi,xi)
µ(ai|xi)

)
is truncated importance weight called traces.

There are, however, a few notable details that we adapt for our method. Firstly, we do not use
the latent zt sampled from the trajectory. This is possible because the latent does not affect the
environment directly. Instead, we consider the behavior policy as µ(a|x), which does not depend on
latents. This approach is useful since we do not need to consider the importance weight with respect
to the HL policy, which might introduce additional variance in the estimator. Another detail is that
the KL term at step s is not considered in δsQ because the KL at step s is not the result of action
as. Instead, we introduce close form KL at step s as a loss for the high level policy πH(zt|xt) to
compensate for this. The pseudocode for the resulting algorithm is illustrated in Algorithm 1.

B RELATED WORK

Entropy regularized reinforcement learning (RL), also known as maximum entropy RL (Ziebart,
2010; Kappen et al., 2012; Toussaint, 2009) is a special case of KL regularized RL. This framework
connects probabilistic inference and sequential decision making problems. Recently, this idea has
been adapted to deep reinforcement learning (Fox et al., 2016; Schulman et al., 2017; Nachum et al.,
2017; Haarnoja et al., 2017; Hausman et al., 2018; Haarnoja et al., 2018b).

Introducing a parameterized default policy provides a convenient way to transfer knowledge or
regularize the policy. Schmitt et al. (2018) use a pretrained policy as the default policy; other works
jointly learn the policy and default policy to capture reusable behaviour from experience (Teh et al.,
2017; Czarnecki et al., 2018; Galashov et al., 2019; Grau-Moya et al., 2019). To retain the role
of default policy as a regularizer, it has been explored to restrict its input (Galashov et al., 2019;
Grau-Moya et al., 2019), parameteric form (Czarnecki et al., 2018) or to share it across different
contexts (Teh et al., 2017; Ghosh et al., 2018).

Another closely related regularization for RL is using information bottleneck (Tishby & Polani,
2011; Still & Precup, 2012; Rubin et al., 2012; Ortega & Braun, 2013; Tiomkin & Tishby, 2017).
Galashov et al. (2019) discussed the relation between information bottleneck and KL regularized RL.
Strouse et al. (2018) learn to hide or reveal information for future use in multi-agent cooperation or
competition. Goyal et al. (2019) consider identifying bottleneck states based on objective similar
to eq. equation 5, which is a special case of our framework, and using it for transfer. Their transfer
scenario is differently motivated with ours, and different objective based on KL divergence between
pretrained HL controllers is used to provide intrinsic reward for learning a new policy without latent
variables.

The hierarchical RL literature (Dayan & Hinton, 1993; Parr & Russell, 1998; Sutton et al., 1999) has
studied hierarchy extensively as a means to introduce inductive bias. Among various ways (Sutton
et al., 1999; Bacon et al., 2017; Vezhnevets et al., 2017; Nachum et al., 2018; 2019; Xie et al., 2018),
our approach resembles Heess et al. (2016); Hausman et al. (2018); Haarnoja et al. (2018a); Merel
et al. (2019), in that a HL controller modulates a LL controller through a continuous channel. For
learning the LL controller, imitation learning (Fox et al., 2017; Krishnan et al., 2017; Merel et al.,
2019), unsupervised learning (Gregor et al., 2017; Eysenbach et al., 2019) and meta learning (Frans
et al., 2018) have been employed. Similar to our approach, (Heess et al., 2016; Florensa et al., 2017;
Hausman et al., 2018) use a pretraining task to learn a reusable LL controller. However, the concept
of a default policy has not been widely explored in this context.

Works that transfer knowledge across different bodies include (Devin et al., 2017; Gupta et al., 2017;
Sermanet et al., 2017; Xie et al., 2018). Devin et al. (2017) mixes and matches modular task and

10

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

Flat policy: πθ(at|εt, xt) with parameter θ
HL policy: πHθ (zt|xt), where latent is sampled by reparameterization zt = fHθ (xt, εt)
Default policies: πH0,φ(zt|xt) and πL0,φ(at|zt, xt) with parameter φ
Q-function: Qψ(at, zt, xt) with parameter ψ
Initialize target parameters θ′ ← θ, φ′ ← φ, ψ′ ← ψ.
Target update counter: c← 0
Target update period: P
Replay buffer: B
repeat

for t = 0,K, 2K, ...T do
Sample partial trajectory τt:t+K with action log likelihood lt:t+K from replay buffer B:
τt:t+K = (st, at, rt, ..., rt+K), lt:t+K = (lt, ..., lt+K) =

(logµ(at|xt), ..., logµ(at+K |xt+K))
Sample latent: εt′ ∼ ρ(ε), zt′ = fHθ (xt′ , εt′)
Compute KL:
D̂KLt′ = DKL

[
πHθ (z|xt′)‖πH0,φ′(z|xt′)

]
+DKL

[
πLθ (a|zt′ , xt′)‖πL0,φ′(a|zt′ , xt′)

]
Compute KL for Distillation:D̂KL

D
t′ =

DKL

[
πHθ (z|xt′)‖πH0,φ(z|xt′)

]
+DKL

[
πLθ (a|zt′ , xt′)‖πL0,φ(a|zt′ , xt′)

]
Compute action entropy: Ĥt′ = Eπθ(a|εt′ ,xt′)[log πθ(a|εt′ , xt′)]
Estimate bootstrap value: V̂t′ = Eπθ(a|εt′ ,xt′) [Qψ′(a, zt+K , xt+K)]− αD̂KLt+K

Estimate traces Munos et al. (2016): ĉt′ = λmin
(
πθ(at′ |εt′ ,xt′)

lt′

)
Apply Retrace to estimate Q targets Munos et al. (2016):
Q̂Rt′ = Qψ′(at′ , zt′ , xt′) +∑
s≥t′ γ

s−t′
(∏t′

i=s ĉi

)(
rs + γ

(
V̂s+1 − αD̂KLs+1

)
−Qψ′(as, zs, xs)

)
Policy loss: L̂π =

∑t+K−1
i=t Eπθ(a|εi,xi)Qψ′(a, zi, xi)− αD̂KLi + αHĤi

Q-value loss: L̂Q =
∑t+K−1
i=t ‖Q̂Ri −Qψ(a, zi, xi)‖2

Default policy loss: L̂πH0 =
∑t+K−1
i=t K̂L

D
i

θ ← θ + βπ∇θL̂π φ← φ+ βπH0 ∇φL̂πH0
ψ ← ψ − βQ∇ψL̂Q
Increment counter c← c+ 1
if c > P then

Update target parameters θ′ ← θ, φ′ ← φ, ψ′ ← ψ
c← 0

end if
end for

until
Algorithm 1: SVG(0) Heess et al. (2015) with experience replay for hierarchical policy

body policies for zero-shot generalization to unseen combination. Gupta et al. (2017); Sermanet et al.
(2017) learn a common representation space to align poses from different bodies. Xie et al. (2018)
transfer the HL controller in a hierarchical agent, where the LL controller is learned with an intrinsic
reward based on goals in state space. This approach, however, requires careful design of the goal
space.

C EXPERIMENTAL SETTINGS

C.1 TASKS AND BODIES

We consider task distributions that are designed such that their solutions exhibit significant overlap in
trajectory space so that transfer can reasonably be expected. They are further designed to contain
instances of variable difficulty and hence provide a natural curriculum.

11

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

Figure 6: Results with alternative training regimes. in Go to 1 of 3 targets, Ant. AR-1 process.
Left: Learning curves with quasi on-policy training regime. Right: Learning curves with a single
actor. Go to 1 of 3 targets, Ant. AR-1 process.

Go to 1 of K targets: In this task the agent receives a sparse reward on reaching a specific target
among K locations. The egocentric locations of each of the targets and the goal target index are
provided as observations. Move K boxes to K targets: the goal is to move one of K boxes to one of
K targets (the positions of which are randomized) as indicated by the environment. Move heavier
box: variants of move K boxes to K targets with heavier boxes. Gather boxes: the agent needs to
move two boxes such that they are in contact with each other. We also consider combinations of these
tasks, such as Move box or go to target, where in each episode the agent is required solve either the
Go to targets task or the Move box to targets task, and a combined task, Move box and go to target,
in which the agent is required to move the box to one target and then go to a different target in a
single episode. Here two small sparse rewards are provided for each component of the task that is
completed and an extra bonus reward is awarded for solving both tasks.

We use three different bodies: Ball, Ant, and Quadruped. Ball and Ant have been used in several
previous works (Heess et al., 2017; Xie et al., 2018; Galashov et al., 2019), and we introduce the
Quadruped as an alternative to the Ant. The Ball is a body with 2 actuators for moving forward
or backward, turning left, and turning right. The Ant is a body with 4 legs and 8 actuators, which
moves its legs to walk and to interact with objects. The Quadruped is similar to the Ant, but with 12
actuators. Each body is characterized by a different set of proprioceptive (proprio) features.

C.2 DETAILS OF EXPERIMENTAL SETUP

Throughout the experiments, we use 32 actors to collect trajectories and a single learner to optimize
the model. We plot average episode return with respect to the number of steps processed by the learner.
Note that the number of steps is different from the number of agent’s interaction with environment,
because the collected trajectories are processed multiple times by a centralized learner to update
model parameters. When learning from scratch we report results as the mean and standard deviation
of average returns for 5 random seeds. For the transfer learning experiments, we use 5 seed for the
initial training, and then transfer all pretrained models to a new task, and train two new HL or LL
controllers (two random seeds) per model on the transfer task. Thus, in total, 10 different runs are
used to estimate mean and standard deviations of the average returns. Hyperparameters, including
KL cost and action entropy regularization cost, are optimized on a per-task basis.

D ADDITIONAL EXPERIMENTAL RESULTS

In the main paper, we present results based on learning speed with respect to the number of time steps
processed by learner in distributed learning setup. Note that the number of time steps processed by
the learner does not necessarily correspond to the number of collected trajectory time steps because
of the use of experience replay, which allows to learning to proceed regardless of the amount of
collected trajectories. We also experimented with two alternative training regimes to ensure that the
speedup results reported are consistent. In Figure 6 left, we compare the learning curves for our
method against the SVG-0 and DISTRAL baselines in a quasi on-policy training regime similar to
that of Espeholt et al. (2018). In Figure 6 right, we perform a similar comparison in the original
replay based off policy training regime but with a single actor generating the data. In both cases, our
method learns faster than both baselines.

12

	Introduction
	RL as probabilistic modelling
	Hierarchically structured policies
	Information asymmetries and parametrization

	Transfer Learning
	Experiments
	Algorithm
	Related Work
	Experimental Settings
	Tasks and Bodies
	Details of Experimental Setup

	Additional Experimental Results

