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ABSTRACT

Exploration plays an important role in reinforcement learning. However, the ex-
ploration policy in most RL algorithms is usually randomly initialized, which can
be extremely ineffective especially when the state-action space is tremendously
large and environmental feedback is sparse. In contrast, imitation learning has
shown promising results in balancing exploration and exploitation with expert
demonstrations, albeit its resource-consuming drawback in collecting high-quality
demonstrations. In this paper, we study the intersection of these two approaches
and propose a novel mimicry constraint for guiding the agent to explore towards
the area with high return by leveraging the expert demonstrations as an explo-
ration prior. We show that our Mimicry Constraint Policy Optimization (MCPO)
improves policy optimization by enforcing the occupancy measure matching to
the expert, and can be integrated into many reinforcement learning methods. Con-
siderable empirical results on challenging benchmarks with sparse reward demon-
strate that our method attains consistent improvement over baselines, even when
the demonstrations are few and imperfect.

1 INTRODUCTION

For robots and other autonomous agents, a crucial aspect of intelligence is the ability to learn from
interacting with the surrounding environment and human (Mnih et al., 2015; Jing et al., 2019).
Reinforcement learning (RL) (Sutton & Barto, 1998) and imitation learning (IL) (Schaal, 1997) are
two major families of algorithms that were proposed to realize these learning paradigms. However,
RL and IL both have some drawbacks: Most of the RL approaches may suffer from inefficient
exploration when the feasible action and state spaces are large while the environmental feedback
is sparse, and the resource consumption for satisfying the requirement of collecting enough high-
quality demonstrations in IL can also be unaffordable. These drawbacks may prevent RL and IL
from generalizing to complex real-world tasks.

To eliminate these drawbacks by combining the best of both RL and IL, reinforcement learning from
demonstrations (RLfD) (Brys et al., 2015; Hester et al., 2018; Kang et al., 2018) has been paid close
attention recently. It studies the intersection of RL and IL, and tries to improve the learning process
of RL by leveraging the demonstrations data and learning methods from IL. In this paper, we mainly
focus on RLfD and specifically concentrate on its most critical concern: improving the exploration
efficiency of RL with expert demonstrations.

Most of the existing research on this problem either depends on the large number of demonstra-
tions (Brys et al., 2015) or complex training strategies and models (Kang et al., 2018), these re-
quirements, in our view, are not realistic to comply, especially in real-world complex domains,
and may also induce low convergence efficiency. In this work, we aim to tackle the problem of
RLfD with a lightweight and effective method, while only few demonstrations will be required. To
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this end, inspired by the occupancy measure matching method in imitation learning (Ho & Ermon,
2016; Kim & Park, 2018), we introduce a novel mimicry constraint defined by the discrepancy be-
tween the state-action distribution between expert and agent into policy optimization, and propose
Mimicry Constraint Policy Optimization (MCPO) algorithm. By leveraging the non-parametric dis-
tance metric MMD (Gretton et al., 2007) and the dual solving of the corresponding constrained
policy optimization problem, MCPO is easy to implement and shown to be efficient. With only few
and imperfect demonstrations, our method achieves consistent improvement over other counterparts
on several challenging control benchmarks with sparse environmental feedback.

2 RELATED WORK

RL from demonstrations. Recent research on reinforcement learning from demonstrations
(RLfD) mainly focus on integrating the expert demonstrations into normal policy optimization meth-
ods, including providing prior for exploration (Brys et al., 2015; Chemali & Lazaric, 2015), facili-
tating the policy convergence (Cederborg et al., 2015) and improving final performance of learned
policy (Hester et al., 2018; Sun et al., 2018; Kang et al., 2018). These approaches mostly share
the same motivation as ours. However, they either require a significantly large amount of perfect
demonstrations (Brys et al., 2015; Hester et al., 2018), which can be unrealistic for real-world tasks
or depend on complex training strategies and models (Kang et al., 2018). In contrast, our MCPO is
lightweight and can still achieve comparable performances on challenging tasks with sparse reward
and few demonstrations; thus these drawbacks can be eliminated.

Constrained optimization in RL. Although most of the policy optimization problems in RL do
not have explicit constraints, we notice some recent related work on constrained policy optimiza-
tion and its efficient solving methods (Achiam et al., 2017; Tessler et al., 2019). However, these
approaches are all built upon CMDP (Altman, 1999), in which only the cost-like constraints are
studied. As our proposed mimicry constraint does not belong to this family, we develop a new
optimization method for solving policy optimization with the mimicry constraint efficiently.

3 METHODOLOGY

In this section, we will first model the reinforcement learning from demonstrations (RLfD) as a
constrained optimization problem with a novel mimicry constraint defined by the provided demon-
strations. To solve this challenging optimization problem, we present a practical solution based on
local approximation. Finally, an efficient implementation will be provided.

3.1 REINFORCEMENT LEARNING FROM DEMONSTRATIONS VIA MIMICRY CONSTRAINT

On solving RLfD, the main idea behind our MCPO is to leverage few demonstrations from an expert
policy πE as an exploration prior and guide the agent to explore towards the area with higher return
and converge much faster. To achieve this prior, we introduce a mimicry constraint constructed with
the provided demonstrations to realize a new constrained optimization in addition to the original
problem setting of local policy search (Kakade, 2002; Schulman et al., 2015), a popular category of
RL approaches.

More specifically, suppose πθ and πE are a θ-parameterized policy and an expert policy respectively,
we could denote their corresponding occupancy measure as ρπθ and ρE , and they will also be the
(unnormalized) density of exploration trajectory under πθ and expert demonstrations.To encourage
the agent with πθ to explore nearer to the area specified by the demonstrations, we thus define the
mimicry constraint as

D (ρπθ (s, a)‖ρE(s, a)) ≤ d, (1)

where D(·‖·) can be any discrepancy measure, and d is the tolerance that controls the range of
exploration w.r.t. the demonstrations, which are samples to ρE . We will discuss the choice of d
lately.

At first glance, the constraint requires the agent policy to not being so far away from the expert policy
by limiting the discrepancy between their corresponding occupancy measure ρπθ and ρE . Therefore,
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the learned policy will have to stay close to the expert to satisfy the constraint during the policy
optimization procedure, which also makes the meanwhile on-policy exploration close to the area
with potentially high return and speeds up the convergence. On the other hand, since the constraint
is likely to be unsatisfied due to either the initialization (i.e., random policy) or approximation, the
solving of policy optimization with this constraint will usually contain a recovery phase to satisfy it,
namely, treating it as an objective instead. This can be seen as a policy imitation with demonstrations
mechanism (Silver et al., 2016; Cruz Jr et al., 2017) that has been shown to be effective in improving
the exploration in subsequent policy optimization.

Overall optimization problem. Notice that, the proposed mimicry constraint depends on current
policy πθ; thus we can integrate the constraint into the optimization problem of RL, i.e., local policy
search. This concludes as the following optimization problem in k-th optimization step

θk+1 = arg max
θ

Eπθk
[
Aπθk (s, a)

]
s.t. D (ρπθ (s, a)‖ρE(s, a)) ≤ dk

DKL

(
πθk‖πθk+1

)
≤ δ.

(2)

Furthermore, since only the samples from ρπθ (exploration rollout) and ρE (demonstrations) are
available during policy optimization, we adopt the non-parametric distance metric MMD as the
discrepancy measure in the mimicry constraint to avoid the density estimation bias

MMD[H, ρπθk , ρE ] ≤ dk, (3)

and it can be approximated via its empirical estimation introduced in (Gretton et al., 2007). The
optimization problem equation 2 is the core of our proposed Mimicry Constraint Policy Optimization
(MCPO). Later, a practical solution for it will be provided.

3.2 APPROXIMATED SOLVING FOR MCPO

Compared to the original local policy search, solving our new optimization problem with mimicry
constraint equation 2 can be much more challenging due to: 1. Feasibility, it may be difficult to
find a feasible solution with the additional constraint. 2. Scalability, policies that are characterized
by a model with high-dimensional parameter space, i.e., neural networks, the computation cost of
the new constraint will become unaffordable. To this end, we propose an approximated solving
for MCPO by linearizing around πθk at the k-th optimization step. Denoting the gradient of the
objective as g, the current MMD at θk as dθk and its gradient as b, the Hessian of the KL-divergence
as H1, the approximation to equation 2 is

θk+1 = arg max
θ

gT (θ − θk)

s.t. bT (θ − θk) + dθk ≤ dk
1

2
(θ − θk)TH(θ − θk) ≤ δ.

(4)

The approximated optimization problem above is convex as the Fisher information matrix H is al-
ways positive semi-definite (Schulman et al., 2015). Therefore, compared to its original form equa-
tion 2, a feasible solution can be found more easily using duality. In particular, given λ and ν as the
Lagrange multipliers for KL-divergence and MMD constraints, a corresponding dual to equation 4
can be written as

max
λ≥0
ν≥0

− 1

2λ
(gTu+ 2νbTu+ ν2bT r)− νc− λδ, (5)

where u = H−1g, r = H−1b, c = dk − dθk . Since the number of variables in this dual problem is
much less than the dimension of θ, the computation cost will also be much less than solving equa-
tion 2. The closed-form expression of optimal solution λ∗, ν∗ can be derived by firstly obtaining

1The KL constraint should be approximated via second-order expansion since its first order gradient is zero
at πθk = πθ . More details on the solving of duality can be found in the supplementary materials.
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and substituting ν∗, then discussing the sub-case and finally gets λ∗. Suppose we have the optimal
solution λ∗, ν∗ of this dual problem, the solution to the primal one will be

θ∗k+1 = θk −
1

λ∗
(u+ rν∗). (6)

When both the constraints are feasible, we update the policy parameter θ by solving the dual for
λ∗ and ν∗ equation 6. However, due to the initialization and approximation error, the proposed
update rule may sometimes not satisfies the constraints in equation 2, especially at the beginning of
optimization. In the next section, we will provide more details on ensuring the feasibility.

3.3 IMPLEMENTATION

In this section, we will present some implementation details of the proposed method, including the
techniques about ensuring the feasibility of solving MCPO, the kernel selection in MMD and finally
the choice of the tolerance factor d in the mimicry constraint.

Feasibility. The main sources that account for the feasibility issues in MCPO are twofold. One lies
in the beginning phase. As the parameter θ is usually randomly initialized, it may induce infeasibility
when the optimization starts. Therefore, a recovery method is necessary. In our implementation, we
propose to transform the constraint into an objective to decrease it

θ∗ = arg min
θ

MMD[H, ρπθ , ρE ]. (7)

As we mentioned in Section 3.1, this recovery approach can be regarded as a policy imitation with
demonstrations, and we also notice that this is exactly the objective of a recently proposed imitation
learning algorithm (Kim & Park, 2018).

Another source of infeasibility comes from equation 6. The update rule may not satisfy the con-
straints due to the approximation error. To this end, a backtracking linesearch along ∆θ =
−λ∗−1(u + rν∗) is used to ensure the constraint satisfaction. To further reduce the computation
cost, we also adopt the conjugate gradient method like (Schulman et al., 2015) to approximately
compute the inverse of H and its products.

Kernel selection. When k(·, x) is a characteristic kernel, MMD[H, p, q] = 0 if and only if p =
q (Smola et al., 2007). This property can help eliminate the inconsistency between minimizing
MMD and morphing two distributions. Therefore, we use a characteristic radial basis function
kernel

k(x′, x) = exp(−‖x− x
′‖22

2σXσX′
). (8)

The bandwidth parameter σX and σX′ are chosen as the standard deviation of given sample set X
andX ′ instead of a fixed value for better adaptability on various state-action pair distributions under
different experiments.

Constraint choice. For tolerance d in mimicry constraint, a straightforward choice is hand-
crafting a fixed d. As discussed on previous sections, a smaller tolerance would restrict the dis-
tribution of state-action pair under learned policy to be closer to expert, which leads to narrower
exploration area; thus a larger tolerance should be used for the imperfect demonstrations. On the
other hand, although a fixed tolerance could guide the exploration at the beginning, it would hurt
the subsequent policy learning when the demonstrations are imperfect. We thus optionally adopt an
annealing mechanism to dynamically adjust d along the training procedure. Specifically, we use an
update rule dk+1 ← dk + dk · ε with a factor ε to gradually increase d for avoiding this issue.

4 DISCUSSION

In this section, we will discuss some prior counterparts on RLfD, including policy pre-training (Sil-
ver et al., 2016) and POfD (Kang et al., 2018), and show their connections to us. We will also
provide some intuitions of our method.
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Algorithm 1 MCPO
Input: Expert demonstrations DE = {ζEi }, policy πθ0 , initial constraints tolerance d0, δ, anneal-
ing factor ε, maximal iterations N .
for k = 0 to N do

Sample rollout Dπ with πθk .
Estimate ĝ, b̂, Ĥ with samples from DE and Dπ .
if the optimization problem equation 4 is feasible then

Solve the dual problem equation 5 to obtain λ∗, ν∗.
Compute update step proposal ∆θ as equation 6.
Update the policy by backtraching linesearch along ∆θ to ensure the satisfaction of con-
straints.

else
Update the policy via the recovery objective equation 7.

end if
Annealing the tolerance dk: dk+1 ← dk + dk · ε.

end for

A straightforward solution to RLfD will be Pre-training the policy with demonstrations via imi-
tation learning, i.e., behaviour cloning (Schaal, 1997; Atkeson & Schaal, 1997), then proceeding
with normal reinforcement learning (Silver et al., 2016). The first step is similar to MCPO when
the constraints are unsatisfied at the beginning. However, this approach cannot guarantee the explo-
ration quality in the later RL step, and thus the subsequent training can still suffer from poor sample
efficiency in the case with large exploration space and sparse feedback.

POfD (Kang et al., 2018) is the work that closest to us. It separately trains a GAN-based distance
metric model to measure the discrepancy between ρπ and ρE and integrates it into the original
task reward to provide an extra penalty cost. Compared to POfD, our MCPO has two significant
advantages: 1. Lightweight, as we use non-parametric MMD as the distance metric, there is no
need to additionally train a complex model, which is easier to implement and can eliminate the
error introduced by the training bias. 2. Effective, by leveraging the demonstrations as a mimicry
constraint instead of a penalty, the discrepancy between the occupancy measure of expert and agent
can be optimized more efficiently, which can better guide the exploration. Finally, our method can
be extended to other value-based methods like DQN (Mnih et al., 2013) via normalized advantage
functions (Gu et al., 2016), a general approach that turns a Q function into a stochastic policy.
Therefore, MCPO can also be integrated into any other RL methods as a universal component as
POfD does.

On few and imperfect demonstrations. In our experiments2, we find MCPO can facilitate policy
optimization even when there are only few and imperfect demonstrations. The intuitions behind
these observations come from the design of mimicry constraint. Firstly, since MMD does not rely on
a large number of samples for training or evaluation (Smola et al., 2007), it can generalize well to the
few samples setting. Secondly, imperfect demonstrations can still indicate an area with a relatively
higher return as an exploration prior. With tolerance annealing strategy, MCPO can benefit from this
prior while final performances will not be affected by the drawbacks in the demonstrations.

5 CONCLUSION

We have presented MCPO, a policy optimization algorithm that aims to improve the exploration
process in reinforcement learning with a novel mimicry constraint. By introducing the discrepancy
between the occupancy measure between the expert and agent as a constraint and providing an
efficient solution for the constrained policy optimization problem, our algorithms can facilitate the
policy learning process by improving the quality of exploration. Experiments on challenging control
benchmarks demonstrate the effectiveness of our proposed method. As the main part of this paper is
solving an optimization problem with mimicry constraint, an exciting direction of future work could

2We defer the empirical results to the supplementary due to the space limit.
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be theoretical analysis on the dynamics and efficiency during the optimization procedure, which
may bring more interpretability to our method.
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