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1 INTRODUCTION

Conventional RL methods learn a separate policy per task, each often requiring millions of interactions
with the environment. Learning large repertoires of behaviors with such methods quickly becomes
prohibitive. Fortunately, many of the problems we would like our autonomous agents to solve share
common structure. For example screwing a cap on a bottle and turning a doorknob both involve
grasping an object in the hand and rotating the wrist. Exploiting this structure to learn new tasks
more quickly remains an open and pressing topic. Meta-learning methods learn this structure from
experience by making use of large quantities of experience collected across a distribution of tasks.
Once learned, these methods can adapt quickly to new tasks given a small amount of experience.

While meta-learned policies adapt to new tasks with only a few trials, during training they require
massive amounts of data drawn from a large set of distinct tasks, exacerbating the problem of sample
efficiency that plagues RL algorithms. Most current meta-RL methods require on-policy data during
both meta-training and adaptation Finn et al. (2017); Wang et al. (2016); Duan et al. (2016); Mishra
et al. (2018); Rothfuss et al. (2018); Houthooft et al. (2018), rendering them exceedingly inefficient
during meta-training. However, making use of off-policy data for meta-RL poses new challenges.
Meta-learning typically operates on the principle that the test tasks should be drawn from the same
distribution as the training tasks – for example, to meta-learn to classify images of new animals from
a few examples, the algorithm should be meta-trained on animal species from across the animal
kingdom Vinyals et al. (2016). This makes it inherently difficult to meta-train a policy to adapt from
off-policy data, which is systematically different from the data the policy would see when it explores
(on-policy) in a new task at meta-test time.

To achieve both adaptation and meta-training data efficiency, we propose an approach that integrates
online inference of probabilistic context variables with existing off-policy RL algorithms. To achieve
rapid adaptation, meta-RL requires reasoning about distributions: when exposed to a new task for
the first time, the optimal meta-learned policy must carry out a stochastic exploration procedure to
visit potentially rewarding states, as well as adapt to the task at hand Gupta et al. (2018). During
meta-training, we learn a probabilistic encoder that accumulates the necessary statistics from past
experience that enable the policy to perform the task. At meta-test time, when the agent is faced
with an unseen task, our method adapts by sampling context variables (“task hypotheses”), acting
according to that task, and then updating its belief about the task by updating the posterior over the
context variables.

The primary contribution of our work is an off-policy meta-RL algorithm Probabilistic Embeddings
for Actor-critic RL (PEARL) that achieves excellent sample efficiency during meta-training, enables
fast adaptation by accumulating experience online, and performs structured exploration by reasoning
about uncertainty over tasks. In our experimental evaluation, we demonstrate state-of-the-art results
with 20-100X improvement in meta-training sample efficiency and substantial increases in asymptotic
performance over prior state-of-the-art on six continuous control meta-learning environments. We
further examine how our model conducts structured exploration to adapt rapidly to new tasks in a
2-D navigation environment with sparse rewards.

2 RELATED WORK

Our work builds on the meta-learning framework Schmidhuber (1987); Bengio et al. (1990); Thrun &
Pratt (1998) in the context of reinforcement learning. Recurrent Duan et al. (2016); Wang et al. (2016)
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and recursive Mishra et al. (2018) meta-RL methods adapt to new tasks by aggregating experience
into a latent representation on which the policy is conditioned. We model latent task variables as
probabilistic and use a simpler aggregation function. Prior work has explored training recurrent
Q-functions with off-policy Q-learning methods Heess et al. (2015); Hausknecht & Stone (2015).
We find the straightforward application of these methods to meta-RL difficult, and explore how
to effectively make use of off-policy data during meta-training. Gradient-based meta-RL methods
focus on on-policy learning, using policy gradients Finn et al. (2017); Stadie et al. (2018); Rothfuss
et al. (2018); Xu et al. (2018a), meta-learned loss functions Sung et al. (2017); Houthooft et al.
(2018), or hyperparameters Xu et al. (2018b). We instead focus on meta-learning from off-policy
data, which is non-trivial to do with these prior methods. Outside of RL, meta-learning methods for
few-shot supervised learning problems have explored a wide variety of approaches and architectures
Santoro et al. (2016); Vinyals et al. (2016); Ravi & Larochelle (2017); Oreshkin et al. (2018). Our
permutation-invariant embedding function is inspired by the embedding function of prototypical
networks Snell et al. (2017).

Prior work has applied probabilistic models to meta-learning. For supervised learning, Rusu et al.
(2019); Gordon et al. (2019); Finn et al. (2018) adapt model predictions using probabilistic latent task
variables inferred via amortized approximate inference. In RL, Hausman et al. (2018) also conditions
the policy on inferred task variables, but the aim is to compose skills via the learned embedding space,
while we focus on adapting to new tasks. While we infer task variables and explore via posterior
sampling, Gupta et al. (2018) adapts via gradient descent and explores via sampling from the prior.

Our approach can be viewed as a meta-learned variant of posterior sampling Strens (2000); Osband
et al. (2013); the probabilistic context posterior over possible tasks enables temporally extended
exploration by acting optimally according to the task. Adaptation at test time in meta-RL can be
viewed as a special case of RL in a POMDP Kaelbling et al. (1998) by including the task as the
unobserved part of the state. We use a variational approach similar to Igl et al. (2018) to estimate
belief over the task. While they focus on general POMDPs and make use of on-policy methods, we
leverage the assumptions of the meta-learning problem to simplify inference, use posterior sampling
for exploration in a new task, and demonstrate how to integrate our approach with off-policy learning.

3 METHOD

Similar to previous meta-RL formulations, we assume a distribution of tasks p(T ), where each task is
a Markov decision process (MDP). Formally, a task T = {p(s0), p(st+1|st,at), r(st,at)} consists of
an initial state distribution p(s0), transition distribution p(st+1|st,at), reward function r(st,at). We
assume that the transition and reward functions are unknown, but can be sampled by taking actions in
the environment. Given a set of training tasks sampled from p(T ), the meta-training process learns a
policy that adapts to the task at hand by conditioning on the history of past transitions, which we refer
to as context C. Let CTn = (sn,an, rn, s

′
n) be one transition in the task T so that CT1:N comprises

the experience collected so far in the current task (we will often write simple C when considering
one task and an arbitrary number of timesteps). At test-time, the policy must adapt to a new set of
tasks from p(T ).

3.1 PROBABILISTIC LATENT CONTEXT

We capture knowledge about how the current task should be performed in a latent probabilistic context
variable Z, on which we condition the policy as πθ(a|s, z). Meta-training consists of leveraging data
from a variety of training tasks to learn to infer Z from a recent history of experience in the new
task, as well as optimizing the policy to solve the task given samples from the posterior over Z. In
this section we describe the structure of the meta-trained inference mechanism. We address how
meta-training can be performed with off-policy RL algorithms in Section 3.2.

To enable adaptation, the latent context Z must encode salient information about the task. We adopt
an amortized variational inference approach Kingma & Welling (2014); Rezende et al. (2014); Alemi
et al. (2016) to learn to infer Z. We train an inference network qφ(z|c) that estimates the posterior
p(z|c). While there are several choices for the objective to optimize qφ(z|c) including learning
predictive models of rewards and dynamics or maximizing returns through the policy, we choose to
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Figure 1: (left) The amortized inference network predicts the posterior over the latent context variables qφ(z|c)
as a permutation-invariant function of prior experience. Samples from this posterior condition the policy. (right)
The actor and critic are meta-learned jointly with the inference network, which is optimized with gradients
from the critic as well as from an information bottleneck on Z. Sampling context (SC ) from a pool of recently
collected, and thus more on-policy, data is critical for off-policy meta-learning.

optimize it to predict the task state-action value function. The resulting training objective is:

ET [EZ∼q(z|cT )[R(T , Z) + βDKL(q(z|cT )||p(z))] (1)

The KL divergence term can also be interpreted as resulting from a variational approximation to an
information bottleneck Alemi et al. (2016) that constrains the mutual information between Z and C.
where p(·) is our variational approximation to the marginal distribution of Z and is assumed to be a
unit Gaussian, and R(T , Z) is the Bellman error for a state-action value function conditioned on Z.
While the parameters of qφ are optimized during meta-training, at meta-test time the latent context
for a new task is simply inferred from gathered experience.

In designing the form of the inference network qφ(z|c), we would like it to be expressive enough
to capture minimal sufficient statistics of task-relevant information, without modeling irrelevant
dependencies. We note that an encoding of a fully observed MDP should be permutation invariant: if
we would like to infer what the task is, identify the MDP model, or train a value function, it is enough
to have access to a collection of transitions {si,ai, s′i, ri}, without regard for the order in which these
transitions were observed. We therefore choose a permutation-invariant representation qφ(z|c1:N )
factorized as

q(z|c1:N ) ∝ ΠN
n=1Ψ(z|cn) (2)

To keep the method tractable, we use Gaussian factors Ψ(z|cn) = N (fµφ (cn), fσφ (cn)), which result
in a Gaussian posterior, see Figure 1 (left).

For fast adaptation at meta-test time, it is critical for the agent to be able to explore and determine
the task efficiently. In prior work, posterior sampling for RL Strens (2000); Osband et al. (2013)
begins with a prior distribution over MDPs, computes a posterior distribution conditioned on the
experience it has seen so far, and executes the optimal policy for an MDP sampled from the posterior
for the duration of an episode as an efficient method for exploration. In particular, acting optimally
according to a random MDP allows for temporally extended exploration, meaning that the agent can
act to test hypotheses even when the results of actions are not immediately informative of the task.
In the single-task deep RL setting, the benefits of posterior sampling were explored in Osband et al.
(2016), which maintains an approximate posterior over value functions via bootstraps. In contrast,
PEARL directly infers a posterior over the latent context Z, which encodes the value function as
it is optimized with gradients from the critic. Meta-training learns a prior over Z that captures the
distribution over tasks. At meta-test time, we sample z’s (initially from the prior and then the updated
posterior) and hold them constant across an episode, thus exploring in a temporally extended and
diverse manner which becomes more optimal for the current task as our belief narrows.

3.2 OFF-POLICY META-REINFORCEMENT LEARNING

While our probabilistic context model is straightforward to combine with on-policy policy gradient
methods, a primary goal of our work is to enable efficient off-policy meta-reinforcement learning.
By contrast, prior work largely makes use of stable but relatively inefficient on-policy algorithms
Duan et al. (2016); Finn et al. (2017); Gupta et al. (2018); Mishra et al. (2018). However, designing
off-policy meta-RL algorithms is non-trivial partly because modern meta-learning is predicated on
the assumption that the distribution of data used for adaptation will match across meta-training
and meta-test. In RL, this implies that since at meta-test time on-policy data will be used to adapt,
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Figure 2: Test-task performance vs. samples collected during meta-training on continuous control domains.
Our approach PEARL outperforms previous meta-RL methods both in terms of asymptotic performance and
meta-training sample efficiency across six benchmark tasks. Dashed lines correspond to the maximum return
achieved by each baseline after 1e8 steps. By leveraging off-policy data during meta-training, PEARL is
20− 100x more sample efficient than the baselines, and achieves consistently equal or better final performance
compared to the best performing prior method in each environment.

on-policy data should be used during meta-training as well. Furthermore, meta-RL requires the
policy to reason about distributions to learn effective stochastic exploration strategies. This problem
inherently cannot be solved by off-policy RL methods that minimize temporal-difference error, as
they do not have the ability to directly optimize for distributions of states visited. In contrast, policy
gradient methods have direct control over the actions taken by the policy. In practice, we were unable
to optimize a straightforward combination of meta-learning and value-based RL.

Our main insight in designing an off-policy meta-RL method with the probabilistic model in Sec-
tion 3.1 is that the data used to train the probabilistic encoder need not be the same as the data used to
train the policy. The policy can treat the context z as part of the state in an off-policy RL loop, while
the stochasticity of the exploration process is provided by the uncertainty in the encoder qφ(z|c).
Given a replay buffer containing all the data collected during training, we define separate samplers Sc
and SRL to sample the context and RL mini-batch respectively. The actor and critic are always trained
with off-policy data sampled from the entire replay buffer B. We define a sampler SC to sample
context batches for training the encoder. Allowing Sc to sample from the entire buffer presents too
extreme a distribution mismatch with on-policy test data. However, the context does not need to be
strictly on-policy; we find that an in between strategy of sampling from a pool of recently collected
data retains on-policy performance with better efficiency. We summarize our training procedure in
Figure 1 (right).

3.3 IMPLEMENTATION

We build our algorithm on top of the soft actor-critic algorithm (SAC) Haarnoja et al. (2018), an
off-policy actor-critic method based on the maximum entropy RL objective which augments the
traditional sum of discounted returns with the entropy of the policy.

SAC exhibits good sample efficiency and stability, and further has a probabilistic interpretation
which integrates well with probabilistic latent contexts. We optimize the parameters of the inference
network q(z|c) jointly with the parameters of the actor πθ(a|s, z) and critic Qθ(s,a, z), using the
reparameterization trick to compute gradients for parameters of qφ(z|c) through sampled z’s. We
train the inference network using gradients from the Bellman update for the critic, given by the
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following loss function

Lcritic = E(s,a,r,s′)∼B
z∼qφ(z|c)

(Qθ(s,a, z)− (r + V̄ (s′, z̄)))2 (3)

where V̄ is a target network and z̄ indicates that gradients are not computed through it. The context
data sampler Sc samples uniformly from data collected in the previous 1000 training steps, while the
actor and critic are trained with samples from the entire replay buffer.

4 EXPERIMENTS

Sample Efficiency and Performance We evaluate PEARL on six continuous control environments
focused around robotic locomotion, simulated via the MuJoCo simulator Todorov et al. (2012).
These locomotion task distributions require adaptation across dynamics (Walker-2D-Params) or
across reward functions (the rest of the domains), and were previously introduced by Finn et al.
(2017) and Rothfuss et al. (2018). We compare to existing policy gradient meta-RL methods ProMP
Rothfuss et al. (2018) and MAML-TRPO Finn et al. (2017) using publicly available code. We also
re-implement the recurrence-based policy gradient RL2 Duan et al. (2016) with PPO Schulman et al.
(2017). We attempted to adapt recurrent DDPG Heess et al. (2015) to our setting, however we were
unable to optimize it. We hypothesize that this is due either to training with batches of correlated
sequences, or to the distribution mismatch in adaptation data, as discussed in Section 3.2.

To evaluate on the meta-testing tasks, we perform online adaptation at the trajectory level, where
the first trajectory is collected with context variable z sampled from the prior r(z). Subsequent
trajectories are collected with z ∼ q(z|c). In these domains, final test-time rollouts are collected after
collecting a context of two trajectories. PEARL significantly outperforms prior meta-RL methods
across all domains, Figure 2, in terms of both asymptotic performance and sample efficiency. Our
approach uses 20-100x fewer samples during meta-training than previous policy gradient approaches
while often also improving final asymptotic performance.

Figure 3: Sparse 2D navigation test-time adaptation.
PEARL is able to start adapting to the task after col-
lecting on average only 5 trajectories. We compare to
MAESN ( Gupta et al. (2018)).

Posterior Sampling For Exploration In this
section we demonstrate that posterior sampling
in our model enables effective exploration strate-
gies in sparse reward MDPs. Intuitively, by sam-
pling from the prior context distribution r(z),
the agent samples a hypothesis based on the
training tasks it has seen before. As the agent
acts in the environment, the context posterior
p(z|c) is updated, allowing it to reason over
multiple hypotheses to determine the task. We
demonstrate this behavior with a 2-D naviga-
tion task in which a point robot must navigate
to different locations on a semi-circle. A shaped
reward is given only when the agent is within a
certain radius of the goal (we experiment with
radius 0.2 and 0.8). We sample training and
testing sets of tasks, each consisting of 100 ran-
domly sampled goals. While our aim is to adapt
to new tasks with sparse rewards, meta-training
with sparse rewards is extremely difficult as it
amounts to solving many sparse reward tasks
from scratch. For simplicity we therefore as-
sume access to the dense reward during meta-
training, as in Gupta et al. (2018), but this bur-
den could also be mitigated with task-agnostic
exploration strategies.

In this setting, we compare to MAESN (Gupta et al. (2018)) and demonstrate we are able to adapt to
the new sparse goal in fewer trajectories, while also requiring far fewer samples for meta-training to
solve the task, Figure 3. Even with fewer samples, PEARL also outperforms MAESN in terms of
final performance.
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