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ABSTRACT

We propose and solve a new few-shot RL problem, where the task is characterized
by a subtask graph which describes a set of subtasks and their dependencies that are
unknown to the agent. The agent needs to quickly adapt to the task over multiple
episodes in the adaptation phase to maximize the return in the test phase. Instead
of directly trying to learn a meta-policy, we introduce a neural subtask graph
inferencer (NSGI) that infers the latent parameter of the task by interacting with the
environment and maximizes the return given the latent parameter. To facilitate the
learning, we adopt the intrinsic reward inspired by upper confidence bound (UCB)
that encourages to explore the environment more efficiently. Our experiment results
on two 2D maze domains show that the proposed method adapts more efficiently
and generalizes better than the existing meta RL and hierarchical RL methods.

1 INTRODUCTION

Adaptation phaseRecipe
(Unknown to agent)

⋮

Test phase

Env

⋮

Inferred subtask graph (    )
Env TI

Symbol

Reward

: AND node

: OR node

⋮, -0.1

+ , -0.2

+ , +0.4

+ , -0.2

in out  ,    r

Figure 1: An example task and the procedure of our agent solving the task. Our adaptation policy πadapt learns
to maximally gather information about current task in adaptation phase. Task inference (TI) module infers the
subtask graph G from the adaptation trajectory τπadapt . Lastly, execution policy πexe executes the inferred subtask
graph Ĝ to maximize the reward in test phase.

Recently, reinforcement learning (RL) systems achieved super-human performance on many complex
tasks (Mnih et al., 2015; Silver et al., 2016; Van Seijen et al., 2017). However, these works have
mostly been focused on a single known task where the agent can be trained for a large number of
times. In order to build more practical and scalable RL agent, it is necessary for the agent to execute
many unknown tasks. To this end, recent works on multi-task RL tried to build agent that can execute
any given task descriptions such as sequential instructions (Oh et al., 2017; Andreas et al., 2017; Yu
et al., 2017; Denil et al., 2017) and complex graph structures (Sohn et al., 2018). However, such task
description may not be readily available in practice. Likewise, Hochreiter et al. (2001); Duan et al.
(2016); Wang et al. (2016); Finn et al. (2017) proposed meta-RL algorithms that can quickly adapt to
the new task without task description input, but they have focused only on the simple tasks such as a
single goal navigation task and a bandit problem.

We formulate a new meta RL problem, named subtask graph inference problem, where the agent
should execute the complex task characterized by a subtask graph (Sohn et al., 2018) that is not given
to the agent; instead, the agent is given few episodes of adaptation phase to learn about the task as
in Figure 1. After the adaptation phase, the agent is required to maximize the reward within a time
limit by executing subtasks in an optimal order in test phase. The subtask graph defines the subtasks
with the corresponding rewards and the preconditions (e.g., recipe in Figure 1). Inspired by recent
multi-task RL works, we propose neural subtask graph inferencer that explicitly infers the latent
information about the task (e.g., subtask graph) which describes the subtasks and their dependencies,
and executes the inferred task.
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Figure 2: Procedure of the agent-environment interaction and training in K-shot RL setting. The agent has a
slow-learning parameter θ and a fast-learning parameter φ.

The contribution of this work can be summarized as follows: (1) We propose a new meta RL problem
with a richer form of tasks compared to the recent works on meta RL. (2) We propose an inductive
logic programming-based task inference module that can infer the latent task parameter from the
agent’s trajectory. (3) We propose a meta policy that is trained to efficiently infer the task parameter
for the faster adaptation. (4) We compare our method with other meta-RL agents on two 2D visual
domains to show that our method can efficiently adapt to the task with complex subtask dependencies.

2 FORMALISM

2.1 FEW-SHOT REINFORCEMENT LEARNING

We assume that a task is defined by an MDP tupleMG = (S,A,PG,RG, ρG, γ) parameterized by
the task parameter G with state set S, action set A, transition dynamics PG, reward function RG,
initial state distribution ρG, and discount factor γ. In K-shot RL, a trial consists of the adaptation
phase with K episodes and the following test phase under a fixed MDPMG as in Figure 2. Between
trials, the task parameter G is sampled and the agent updates its slow-learning parameter θ in training.
In adaptation phase, the agent adapts to the task by updating its fast-learning parameter φ, where the
initialization and update function of φ are the functions of θ. In the test phase, the agent’s performance
is measured in terms of the loss L(πθ) = −Eπθ,φH+1

[∑H′

t=1 r
′
t

]
, where H is the adaptation phase

horizon, φH+1 is the fast-learning parameter after the adaptation, πθ,φH+1
is the policy after the

adaptation, H ′ is the test phase horizon, and r′t is the reward at time t in test phase. The goal is to
find the optimal policy πθ that minimizes the loss L(πθ).

2.2 SUBTASK GRAPH INFERENCE PROBLEM

Subtask graph and environment We define the terminologies as follows:
• Completion: xt = [x1t , . . . , x

N
t ] where xit = 1 if agent has executed subtask i, and 0 otherwise.

• Eligibility: et = [e1t , . . . , e
N
t ] where eit = 1 if subtask i is eligible (i.e., agent can perform subtask

i) at time t, and 0 otherwise.
• Precondition: c = {c1, . . . , cN} where ci is the logical expression of which variable is the

completion vector x and value is the eligibility of i-th subtask ei. We refer the corresponding
Boolean function f ic : x 7→ ei as precondition function.

• Subtask reward: r = [r1, . . . , rN ] specifies the reward given to agent for executing each subtask.
• Time budget: stept ∈ R is the remaining time-steps until episode termination.
• Episode budget: epit ∈ R is the remaining number of episodes in adaptation phase.
• Observation: obst ∈ RH×W×C is a visual observation at time t as illustrated in Figure 1.
The subtask graph G defines N subtasks with corresponding rewards r and the preconditions c. The
state input at time t consists of st = {obst,xt, et, stept, epit}. We assume that the agent has learned
a set of options (O) (Precup, 2000; Stolle & Precup, 2002; Sutton et al., 1999) that performs subtasks
by executing one or more primitive actions.

3 METHOD

To tackle the problem, our neural subtask graph inferencer (NSGI) model infers the latent subtask
graph G, instead of adapting the fast-learning parameter φ as in Figure 7. The adaptation policy
πadapt
θ (o|τ) rollouts the episodes in adaptation phase. The task inference module subsequently takes

as input the adaptation trajectory τ and infers the subtask graph Ĝ using inductive logic programming
(ILP) algorithm. In the test phase, the inferred task parameter Ĝ is used as the adapted fast-learning
parameter φH+1. Our execution policy πexe

G (o|s) takes as input the inferred subtask graph Ĝ, and
execute it to maximize the return.
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Figure 3: (Left) Our NSGI model and (Right) the architecture of adaptation policy πadapt
θ .

3.1 ADAPTATION PHASE: SUBTASK GRAPH INFERENCE

Let G = (c, r) be the subtask graph with the subtask rewards r and c, and τt =
{s1,o1, r1,d1, . . . , st} be the adaptation trajectory under adaptation policy πθ until time step t.
The maximum-likelihood estimate (MLE) of latent variables G, conditioned on the trajectory τH can
be written as

ĜMLE = argmax
c,r

p(τH |c, r), (1)

where H is the adaptation horizon. Then, the likelihood term can be further expanded as

p(τH |c, r) = p(s1|c)
H∏
t=1

πθ (ot|τt) p(st+1|st,ot, c)p(rt|st,ot, r)p(dt|st,ot) (2)

∝ p(s1|c)
H∏
t=1

p(st+1|st,ot, c)p(rt|st,ot, r), (3)

where we dropped the terms that are independent ofG. By definition, the precondition c depends only
on the precondition probability in the transition dynamics (see Supplementary material for detail):
p(st+1|st,ot, c) ∝ p(et+1|xt+1, c). Then, we can compute ĜMLE as:

ĜMLE = (ĉMLE, r̂MLE) =

(
argmax

c

H∏
t=1

p(et|xt, c), argmax
r

H∏
t=1

p(rt|st,ot, r)

)
. (4)

Precondition inference via logic induction For given precondition c and completion x, the pre-
condition function uniquely determines the corresponding eligibility as e = fc(x) (see Section 2.2).
Thus, finding ĉMLE is equivalent to finding the precondition function fc(·) that satisfies all the input-
output pairs {xt, et}Ht=1, which is logic program induction problem. To solve this problem, we used
the classification and regression tree (CART) to infer the precondition function fc for each subtask
based on Gini impurity (Breiman, 2017). Intuitively, the reconstructed decision tree is the simplest
Boolean function approximation for the given input-output pairs. Then, we converted it to a logic
expression (i.e., precondition) in sum-of-product (SOP) notation to build the subtask graph.

Subtask reward inference For inferring the subtask reward r̂MLE, we modeled each component of
subtask reward as a Gaussian distribution ri ∼ N (µ̂i, σ̂i). Then, the µ̂iMLE is the sample mean of the
rewards received after executing subtask i in the trajectory τH : r̂iMLE = µ̂iMLE = E [rt|ot = i].

3.2 TEST PHASE: SUBTASK GRAPH EXECUTION

Given the subtask graph Ĝ inferred in adaptation phase, we learn a task execution policy πexe
Ĝ

(ot|st)
that aims to maximize the cumulative reward in test phase. Since the subtask graph Ĝ is given, the
problem is equivalent to the subtask graph execution problem (Sohn et al., 2018). Following (Sohn
et al., 2018), we used graph reward propagation (GRProp) policy πGRProp

Ĝ
(o|x) as our SGE policy.

Please see the supplementary material for the details on GRProp policy.

3.3 ARCHITECTURE

Figure 7 illustrates the architecture of our NSGI model. Our adaptation policy takes the agent’s
trajectory τt = {st,ot, rt,dt} at time t as input. For observation input, the policy and value outputs
shares the embedding encoded by CNN and GRU. For other inputs, we concatenated them and used
two separate fully-connected (FC) layers for the outputs after GRU encoding. Finally, the observation
and flat embeddings are concatenated and fed to FC layer to produce each of policy and value outputs
(see supplementary material for more detail).
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3.4 POLICY OPTIMIZATION

Following the few-shot RL formulation, we can directly optimize the loss function L(πθ) using
policy gradient by treating the return in test phase as the last step reward of adaptation phase.
However, we found it challenging to train our model for two reasons: 1) the delayed and sparse
reward, and 2) high task variance due to high expressive power of subtask graph. To facilitate the
learning, we propose to give an intrinsic bonus in adaptation phase. Inspired by the upper confidence
bound (UCB) (Auer et al., 2002), we define the bonus term as rUCB

t = wUCBI (xt /∈ τt−1), where
wUCB = 1

N

∑N
i=1 log(n

(i)
0 + n

(i)
1 )/n

(i)

eit
, N is the number of subtasks and n(i)e is the number of

occurrences of e(i) = e until time t. The weight wUCB is designed to encourage the agent to make the
subtask eligible that is seldom eligible. The conditioning term I (xt /∈ τt−1) encourages the agent to
visit the state with novel xt, since the inputs with same xt are ignored in ILP module for duplication.
We trained the adaptation policy πθ using actor-critic method with GAE (Schulman et al., 2015) to
minimize the loss LUCB (πθ) = −Eπθ

[∑H
t=1 r

UCB
t

]
, in adaptation phase, where H is the adaptation

horizon (see supplementary material for the complete procedure of training).

4 EXPERIMENT

In the experiment, we investigate the following research questions: 1) Can NSGI accurately infer the
task parameter G? 2) Does the adaptation policy πθ improves the inference? 3) Does using UCB
bonus facilitate the training? 4) How does NSGI perform compared to other meta-RL algorithms? 5)
Can NSGI generalize to longer adaptation horizon, and unseen and more complex tasks?

4.1 DOMAIN

Playground Mining
Task D1 D2 D3 D4 Eval

Depth 4 4 5 6 4-10
Subtask 13 15 16 16 10-26

Table 1: (Playground) D1 have the same graph
structure as training set, but the graph was unseen.
D2,D3, and D4 have (unseen) larger graph struc-
tures. (Mining) Eval are unseen during training.

Following (Sohn et al., 2018), we evaluate the perfor-
mance of our agents on two domains: Mining and
Playground. Table 1 summarizes the subtask graphs
used for evaluation (see supplementary material for
details on subtask graph generation).
Mining is inspired by Minecraft (see Figure 1) where
the agent may receive reward by picking up raw mate-
rials in the maze or crafting items. The set of subtasks
and subtask graph were hand-coded according to the crafting recipes in Minecraft.
Playground is a more flexible and challenging domain. The subtask graph is randomly generated
without any context, hence its precondition can be any logical expression and the reward may be
delayed. Some of the objects randomly move, which makes the environment stochastic.

4.2 AGENTS

We evaluated the following policies:
• Random policy executes any eligible subtask.
• GRProp+GT is graph reward propagation policy with ground-truth subtask graph input.
• NSGI-RND (Ours) uses random policy to rollout in adaptation phase
• NSGI-Meta (Ours) uses learned meta adaptation policy to rollout in adaptation phase
• RL2 is the meta-RL agent in (Duan et al., 2016), trained to maximize the return over K episodes
• HRL is the hierarchical RL agent in (Sohn et al., 2018) trained with actor-critic method in

adaptation phase. After the test phase, the network parameter is reset.
For RL2 and HRL, we used the same architecture as our NSGI adaptation policy.

4.3 RESULTS

To evaluate the generalization performance, we trained the agent on the smallest graph D1 with 10
episodes budget, and tested on the unseen graphs D1 and unseen larger graphs D2-D4 with up to
20 episodes budget in Playground. In Mining, we trained on randomly generated graphs with 25
episodes budget and tested on unseen graphs Eval with up to 50 episodes budget (see Table 1). We
measured the normalized return in test phase R̂ = (R − Rmin)/(Rmax − Rmin) averaged over
four random seeds, where Rmin and Rmax correspond to the average return of the Random and the
GRProp+GT agent respectively. The shaded area in the plot indicates the range between R̂+ σ and
R̂− σ where σ is the standard error of normalized return.
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4.3.1 TRAINING PERFORMANCE
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Figure 4: Learning curve on Play-
ground domain.

The learning curves is illustrated in Figure 4. Over the training,
the performance of our NSGI-Meta improves over the NSGI-RND
with a large margin. It demonstrates that our meta adaptation policy
learns to explore the environment much more efficiently than random
policy by maximizing the UCB bonus. Also, the performance of
RL2 improves over time, eventually outperforming the HRL. This
indicates that RL2 learns 1) a common strategy that is generally
applicable to all the tasks and 2) an efficient adaptation scheme such
that it can adapt to the given task more quickly than standard policy
gradient update in HRL.

4.3.2 ADAPTATION AND GENERALIZATION PERFORMANCE
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Figure 5: Generalization performance with varying adaptation horizon on unseen tasks (D1 and Eval) and larger
tasks (D2-4) for longer (unseen) horizon. Our NSGI-based models outperform HRL and RL2.

Adaptation efficiency In figure 5, we measured the normalized reward R̂ with varying number of
adaptation episode budget to see how quickly each agent can adapt to the given task. Our NSGI-Meta
consistently outperforms NSGI-RND across all the tasks, showing that our meta adaptation policy
can efficiently explore only the informative states that is likely to improve the subtask graph inference.
Also, our NSGI-Meta and NSGI-RND perform better than HRL and RL2 in all the tasks, showing
that separating the problem of task inference and execution brings substantial gains for solving
complex task with subtask dependencies. Finally, the RL2 outperforms HRL for the seen tasks (D1
and Eval) and seen adaptation horizon by learning the common strategy shared among tasks.
Generalization We evaluated the generalization performance on unseen task and longer adaptation
horizon in figure 5. Both of our NSGI-based models generalize well to unseen tasks and longer
adaptation horizon without significant degradation of performance. It demonstrates that the efficient
exploration scheme learned from the UCB intrinsic bonus generalizes well to unseen tasks and longer
adaptation horizon, and that our task execution policy, GRProp, generalized well to unseen tasks.
However, RL2 fails to generalize to unseen task and longer adaptation horizon. In task D2-D4 with
unseen adaptation horizon, the RL2 is outperformed by HRL and the performance even decreases
for very long horizon case (D2, D3, and mining). This indicates that 1) the adaptation scheme that
RL2 learned does not generalize well to longer adaptation horizon, and fails to outperform policy
gradient update of HRL, and 2) the common strategies learned by RL2 to solve training tasks does
not generalize well to the unseen testing tasks.

5 CONCLUSION

We introduce and solve a few-shot RL problem with a complex subtask dependencies. We propose
to learn a meta-policy that learns to efficiently infer the latent structure of the task in the form of
subtask graph, and the execution policy that executes the inferred subtask graph. The empirical
results show that our agent can efficiently explore the environment in adaptation phase to improve the
inference, and exploit the inferred information in test phase. In this work, we assumed that the option
is pre-learned and the environment provides the status of each subtask. In the future work, our model
may be extended to infer the relevant subtask status from the observation, and discover the option
from the structure of the task.
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A DETAILS OF THE TASK

We define each task as an MDP tupleMG = (S,A,PG,RG, ρG, γ) where S is a set of states,A is a
set of actions, PG : S ×A× S → [0, 1] is a task-specific state transition function,RG : S ×A → R
is a task-specific reward function and ρG : S → [0, 1] is a task-specific initial distribution over states.
In the experiment, we used γ = 1. We describe the subtask graph G and each component of MDP in
the following paragraphs.

Terminologies We define the terminologies as follows:

• Completion: xt = [x1t , . . . , x
N
t ] where xit = 1 if agent has executed subtask i, and 0 otherwise.

• Eligibility: et = [e1t , . . . , e
N
t ] where eit = 1 if subtask i is eligible (i.e., agent can perform subtask

i) at time t, and 0 otherwise.
• Precondition: c = {c1, . . . , cN} where ci is the logical expression of which variable is the

completion vector x and value is the eligibility of i-th subtask ei. We refer the corresponding
Boolean function f ic : x 7→ ei as precondition function.

• Subtask reward: r = [r1, . . . , rN ] specifies the expected reward given to agent for executing
each subtask.

• Time budget: stept ∈ R is the remaining time-steps until episode termination.
• Episode budget: epit ∈ R is the remaining number of episodes in adaptation phase.
• Observation: obst ∈ RH×W×C is a visual observation at time t as illustrated in Figure 1.

Subtask graph and subtask The subtask graph consists of N subtasks that is a subset of pre-
learned options O, the subtask reward r, and the set of precondition of each subtask c. The set of
subtasks is O = Aint ×X , where Aint is a set of primitive actions to interact with objects, and X is
a set of all types of interactive objects in the domain. To execute a subtask (aint, obj) ∈ Aint ×X ,
the agent should move on to the target object obj and take the primitive action aint.

State The state st consists of the observation obst, the completion vector xt, the eligibility vector
et, the time budget stept, and the episode budget epit. An observation obst is represented as
H ×W × C tensor, where H and W are the height and width of map respectively, and C is the
number of object types in the domain. The (h,w, c)-th element of observation tensor is 1 if there
is an object c in (h,w) on the map, and 0 otherwise. The time budget stept indicates the number of
remaining time-steps until the episode termination. The episode budget epit indicates the number
of remaining episodes until the adaptation phase terminates. The completion vector and eligibility
vector provide additional information about N subtasks. The eligibility vector et is computed from
completion vector xt and the precondition function fc as et = fc(xt), where the precondition
function fc is defined by subtask graph G. The details of completion vector and eligibility vector
will be explained in Transition dynamics and reward paragraph below.

Initial state distribution In the beginning of episode, the initial time budget stept is sampled from
a pre-specified range Nstep for each subtask graph (See section C for detail), the completion vector
xt is initialized to a zero vector in the beginning of the episode x0 = [0, . . . , 0] and the observation
obs0 is sampled from the task-specific initial state distribution ρG. Specifically, the observation is
generated by randomly placing the agent and the N objects corresponding to the N subtasks defined
in the subtask graph G.

Transition dynamics and reward Given the current state (obst,xt, et, stept, epit) and option
taken ot, the next step state (obst+1,xt+1, et+1, stept+1, epit+1) is computed from the subtask
graph G. When the agent executes subtask i, the i-th element of completion vector is updated by the
following update rule:

xit+1 =

{
1 if eit = 1
xit otherwise . (5)

The agent receives the reward randomly sampled from a distribution with the mean value of ri. For
both Playground and Mining domain, we used uniform distribution from 0.8 ∗ ri to 1.2 ∗ ri. The
observation is updated such that agent moves on to the target object, and perform corresnponding
primitive action (See Section B for the full list of subtasks and corresponding primitive actions on
Mining and Playground domain). The precondition function fc computes eligibility vector et+1 from
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the completion vector xt+1 and subtask graph G as follows:

eit+1 = OR
j∈Childi

(
yjAND

)
, (6)

yiAND = AND
j∈Childi

(
x̂i,jt+1

)
, (7)

x̂i,jt+1 = xjt+1w
i,j + (1− xjt+1)(1− wi,j), (8)

where wi,j = 0 if there is a NOT connection between i-th node and j-th node, otherwise wi,j = 1.
Intuitively, x̂i,jt = 1 when j-th node does not violate the precondition of i-th node. Executing each
subtask costs different amount of time depending on the map configuration. Specifically, the time cost
is given as the Manhattan distance between agent location and target object location in the grid-world
plus one more step for performing a primitive action.

B DETAILS OF ENVIRONMENT

B.1 MINING

There are 15 types of objects: Mountain, Water, Work space, Furnace, Tree, Stone, Grass, Pig, Coal,
Iron, Silver, Gold, Diamond, Jeweler’s shop, and Lumber shop. The agent can take 10 primitive
actions: up, down, left, right, pickup, use1, use2, use3, use4, use5 and agent cannot moves on to the
Mountain and Water cell. Pickup removes the object under the agent, and use’s do not change the
observation. There are 26 subtasks in the Mining domain:

• Get wood/stone/string/pork/coal/iron/silver/gold/diamond: The agent should go to
Tree/Stone/Grass/Pig/Coal/Iron/Silver/Gold/Diamond respectively, and take pickup action.
• Make firewood/stick/arrow/bow: The agent should go to Lumber shop and take

use1/use2/use3/use4 action respectively.
• Light furnace: The agent should go to Furnace and take use1 action.
• Smelt iron/silver/gold: The agent should go to Furnace and take use2/use3/use4 action

respectively.
• Make stone-pickaxe/iron-pickaxe/silverware/goldware/bracelet: The agent should go to

Work space and take use1/use2/use3/use4/use5 action respectively.
• Make earrings/ring/necklace: The agent should go to Jeweler’s shop and take use1/use2/use3

action respectively.

The icons used in Mining domain were downloaded from www.icons8.com and
www.flaticon.com. The Diamond and Furnace icons were made by Freepik from
www.flaticon.com.

B.2 PLAYGROUND

There are 10 types of objects: Cow, Milk, Duck, Egg, Diamond, Heart, Box, Meat, Block, and Ice. The
Cow and Duck move by 1 pixel in random direction with the probability of 0.1 and 0.2, respectively.
The agent can take 6 primitive actions: up, down, left, right, pickup, transform and agent cannot
moves on to the block cell. Pickup removes the object under the agent, and transform changes the
object under the agent to Ice. The subtask graph was randomly generated without any hand-coded
template (see Section C for details).

C DETAILS OF SUBTASK GRAPH GENERATION

C.1 MINING DOMAIN

The precondition of each subtask in Mining domain was defined as Figure 6. Based on this graph,
we generated all possible sub-graphs of it by removing the subtask node that has no parent node,
while always keeping subtasks A, B, D, E, F, G, H, I, K, L. The reward of each subtask was randomly
scaled by a factor of 0.8 ∼ 1.2.
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Figure 6: The entire graph of Mining domain. Based on this graph, we generated 640 subtask graphs by removing
the subtask node that has no parent node.

C.2 PLAYGROUND DOMAIN

NT number of tasks in each layer
Nodes ND number of distractors in each layer

NA number of AND node in each layer
r reward of subtasks in each layer
N+
ac number of children of AND node in each layer

N−ac number of children of AND node with NOT connection in each layer
Edges Ndp number of parents with NOT connection of distractors in each layer

Noc number of children of OR node in each layer
Episode Nstep number of step given for each episode

Table 2: Parameters for generating task including subtask graph parameter and episode length.

For training and test sample generation, the subtask graph structure was defined in terms of the
parameters in table 2. To cover wide range of subtask graphs, we randomly sampled the parameters
NA, NO, N

+
ac, N

−
ac, Ndc, and Noc from the range specified in the table 3, while NT and ND was

manually set. We prevented the graph from including the duplicated AND nodes with the same
children node(s). We carefully set the range of each parameter such that at least 500 different subtask
graphs can be generated with the given parameter ranges. The table 3 summarizes parameters used to
generate training and evaluation subtask graphs for the Playground domain.

D DETAILS OF GRPROP POLICY

Intuitively, GRProp policy modifies the subtask graph to a differentiable form such that we can
compute the gradient of modified return with respect to the subtask completion vector in order to
measure how much each subtask is likely to increase the modified return. Specifically, the logical
AND, OR, and NOT operations in Equations 6, 7, and 8 are substituted by the smoothed counterparts
as follows:

pi = λorẽ
i + (1− λor)x

i, (9)

ẽi = ÕR
j∈Childi

(
ỹjAND

)
, (10)

ỹjAND = ÃND
k∈Childj

(
x̂j,k

)
, (11)

x̂j,k = wj,kpk + (1− wj,k)ÑOT
(
pk
)
, (12)
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NT {6,4,2,1}
ND {2,1,0,0}
NA {3,3,2}-{5,4,2}

Train N+
ac {1,1,1}-{3,3,3}

(=D1) N−ac {0,0,0}-{2,2,1}
Ndp {0,0,0}-{3,3,0}
Noc {1,1,1}-{2,2,2}
r {0.1,0.3,0.7,1.8}-{0.2,0.4,0.9,2.0}

Nstep 48-72
NT {7,5,2,1}
ND {2,2,0,0}
NA {4,3,2}-{5,4,2}

D2 N+
ac {1,1,1}-{3,3,3}

N−ac {0,0,0}-{2,2,1}
Ndp {0,0,0,0}-{3,3,0,0}
Noc {1,1,1}-{2,2,2}
r {0.1,0.3,0.7,1.8}-{0.2,0.4,0.9,2.0}

Nstep 52-78
NT {5,4,4,2,1}
ND {1,1,1,0,0}
NA {3,3,3,2}-{5,4,4,2}

D3 N+
ac {1,1,1,1}-{3,3,3,3}

N−ac {0,0,0,0}-{2,2,1,1}
Ndp {0,0,0,0,0}-{3,3,3,0,0}
Noc {1,1,1,1}-{2,2,2,2}
r {0.1,0.3,0.6,1.0,2.0}-{0.2,0.4,0.7,1.2,2.2}

Nstep 56-84
NT {4,3,3,3,2,1}
ND {0,0,0,0,0,0}
NA {3,3,3,3,2}-{5,4,4,4,2}

D4 N+
ac {1,1,1,1,1}-{3,3,3,3,3}

N−ac {0,0,0,0,0}-{2,2,1,1,0}
Ndp {0,0,0,0,0,0}-{0,0,0,0,0,0}
Noc {1,1,1,1,1}-{2,2,2,2,2}
r {0.1,0.3,0.6,1.0,1.4,2.4}-{0.2,0.4,0.7,1.2,1.6,2.6}

Nstep 56-84

Table 3: Subtask graph parameters for training set and tasks D1∼D4.

where x ∈ Rd is the input vector,

ÕR (x) = softmax(worx) · x, (13)

ÃND (x) = max (0, ζ(x, wand)− |x|+ 1) , (14)

ÑOT (x) = −wnotx, (15)

|x| = d, ζ(x, β) = 1
β log(1 + exp(βx)) is a soft-plus function, and λor = 0.6, wor = 2, wand =

3, wnot = 2 are the hyper-parameters of GRProp. With the smoothed operations, the sum of smoothed
and modified reward is given as:

Ũt = rTp. (16)
Finally, the graph reward propagation policy is a softmax policy,

π(ot|G,xt) = Softmax
(
∇xtŨt

)
= Softmax

(
Tλorr

T + T (1− λor)r
T∇xt ẽt

)
, (17)

where we used the softmax temperature T = 40.
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Figure 7: (Left) Our NSGI model and (Right) the architecture of adaptation policy πadapt
θ .

E DETAILS OF NSGI ARCHITECTURE

Our NSGI architecture encodes the observation input using CNN module. Specifically, the ob-
servation embedding is computed by Conv1(16x1x1-1/0)-Conv2(32x3x3-1/0)-Conv3(64x3x3-1/1)-
Conv4(32x3x3-1/1)-Flatten-FC(256)-GRU(256). Other inputs are all concatenated into a single
vector, and fed to GRU(256). In turn, we extracted two flat embeddings using two separate FC(256)
heads for policy and value outputs. For each output, the observation and flat embeddings and concate-
nated into single vector, and fed to FC(256)-FC(d) for policy output and FC(256)-FC(1) for value
output, where d is the policy dimension. We used ReLU activation function in all the layers.

F DETAILS OF TRAINING NSGI-META

Algorithm 1 Adaptation policy optimization

Require: p(G): distribution over subtask graph
Require: α: step size hyperparameter

1: while not done do
2: Sample batch of task parameters {Gi}Mi=1 ∼ p(G)
3: for i = 1, . . . ,M do
4: Rollout K episodes τ = {st,ot, rt,dt}Ht=1 ∼ π

adapt
θ in taskMGi . adaptation phase

5: if UCB bonus then
6: Compute rUCB

t = wUCBI (xt /∈ τt−1)
7: else
8: Ĝi = ILP(τ) . task inference
9: Sample τ ′ ∼ πGRProp

Ĝi
in taskMGi . test phase

10: if UCB bonus then
11: Update θ ← θ − α∇θ

∑M
i=1 LUCB

MGi

(
πadapt
θ

)
using LUCB (πθ) = −Eπθ

[∑H
t=1 r

UCB
t

]
12: else
13: Update θ ← θ − α∇θ

∑M
i=1 LMGi

(
πGRProp
Ĝi

)
using L(πθ) = −Eπθ,φH+1

[∑H′

t=1 r
′
t

]

Table 1 describes the pseudo-code for training our NSGI-Meta model with and without UCB bonus
term. In adaptation phase, we ran a batch of 48 parallel environments. In test phase, we measured the
average performance over 4 episodes with 8 parallel workers (i.e., average over 32 episodes). We
used actor-critic method with GAE (Schulman et al., 2015) as follows:

∇θL = EG∼Gtrain

[
Es∼πθ

[
−∇θ log πθ

∞∑
l=0

(
l−1∏
n=0

(γλ)kn

)
δt+l

]]
, (18)

δt = rt + γktV πθ (st+1)− V πθ (st), (19)
where we used the learning rate α = 0.002, γ = 1, and λ = 0.9. We used RMSProp optimizer
with the smoothing parameter of 0.99 and epsilon of 1e-5. We trained our NSGI-Meta agent for
8000 trials, where the agent is updated after every trial. We also used the entropy regularization
with annealed parameter ρ. We started from ρ = 0.05 and linearly decreased it after 1200 trials
until it reaches ρ = 0 at 3200 trials. During training, we update the critic network to minimize
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E
[
(Rt − V πθ (st))

2
]
, whereRt is the cumulative reward at time t with the weight of 0.03. We clipped

the magnitude of gradient to be no larger than 1.

G DETAILS OF TRAINING RL2 AND HRL

For training RL2 and HRL, we used the same architecture and algorithm with NSGI-Meta. For RL2,
we used the same hyper-parameters except the learning rate α = 0.001 and the critic loss weight of
0.005. For HRL, we used the learning rate α = 0.001 and the critic loss weight of 0.12. We used the
best hyper-parameters chosen from the same candidate hyper-parameter set for all the agents.
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