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ABSTRACT

In conventional partially observable Markov decision processes, the observations
that the agent receives originate from fixed known distributions. However, in a
variety of real-world scenarios, the agent has an active role in its perception by
selecting which observations to receive, leading to a combinatorial expansion of
the action space. We use the structural decomposition of the action space to de-
velop a novel and computationally efficient point-based value iteration algorithm.
We prove that the proposed algorithm outputs a near-optimal value function and
demonstrate its performance empirically.

1 INTRODUCTION

In the era of information explosion it is crucial to develop decision-making platforms that are able to
judiciously extract useful information to accomplish a defined task. Such problems are composed of
both an active perception element and a planning element, and appear in many applications including
artificial intelligence, robotics, networked systems and internet of things.

We address joint perception and planning in partially observable Markov decision processes
(POMDPs). Our main contribution is establishing near-optimal and tractable solutions for a class of
problems where perception is defined as picking a constrained subset of information sources. We
prove that it is possible to decouple the perception action space and the planning action space yet
still achieve near-optimal strategies. To that end, we formulate the joint active perception and plan-
ning problem for POMDPs, develop a perception-aware point-based value iteration algorithm, and
establish its theoretical guarantees.

The class of active perception considered in this paper, i.e., picking the most useful information
sources, resembles the well-established problem of subset selection (Krause & Guestrin, 2007;
Krause & Golovin, 2014; Qian et al., 2017). This type of active perception arises in various ap-
plications in control systems, robotics, and machine learning, where the constraints on sensing stem
from power, processing capability, or communication limits.

1.1 RELATED WORK

Prior work such as Spaan (2008); Spaan & Lima (2009); Natarajan et al. (2015) model active per-
ception as a POMDP. However, the most relevant work to ours is that of Araya et al. (2010); Spaan
et al. (2015); Satsangi et al. (2018). Araya et al. (2010) proposed ρPOMDP framework where the
reward depends on the entropy of the belief. Spaan et al. (2015) introduced POMDP-IR where the
reward depends on an accurate prediction about the state. Satsangi et al. (2018) employed the sub-
modularity of the underlying value function to use greedy scheme for sensor selection. The main
difference of our work is that we consider active perception as a means to accomplishing the origi-
nal task while in these work, active perception is the task itself and hence the POMDP rewards are
metrics to capture perception quality.
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2 PROBLEM FORMULATION

We introduce a new class of POMDP models, called AP2-POMDP, that are suitable for problems
with both elements of active perception and planning.
Definition 1. An AP2-POMDP is a tuple P = (S,A, k, T,Ω, O,R, γ). S is the finite set of states.
A = Apl × Apr denotes the finite set of paired actions with Apl being the set of planning actions
and Apr being the set of perception actions. Apr = {δ ∈ {0, 1}n : ‖δ‖0 ≤ k} constructs an
n-dimensional lattice where k is the maximum number of information sources to be activated. Each
component of an action δ ∈ Apr determines whether to activate the corresponding information
source, e.g. sensor. Let ζ(δ) = {i : δ(i) = 1} to denote the subset of information sources that
are selected by δ. T : S × Apl × S → [0, 1] denotes the probabilistic transition function. Ω =
Ω1 × Ω2 × . . .× Ωn is the partitioned set of observations, where each Ωi corresponds to the set of
measurements observable by information source i. O : S×A×Ω→ [0, 1] denotes the probabilistic
observation function. R : S ×Apl → R is the reward function, and γ ∈ [0, 1] is the discount factor.

In many practical settings, the measurements from information sources only depend on the state
and the previous action, as formally stated below.
Assumption 1. We assume that given the current state and the previous action, the observations
from information sources are mutually independent, i.e., ∀I1, I2 ⊆ {1, 2, . . . , n}, I1 ∩ I2 = ∅ :
Pr(

⋃
i1∈I1 ω

i1 ,
⋃
i2∈I2 ω

i2 |s, β) = Pr(
⋃
i1∈I1 ω

i1 |s, β)Pr(
⋃
i2∈I2 ω

i2 |s, β).

Given the initial belief b0, the following update equation holds between previous belief b and the
belief b

′a,ω
b after taking action a = (β, δ) and receiving observation ω:

b
′a,ω
b (s′) =

Pr (ω|s′, β, δ)
∑
s Pr(s

′|s, β)b(s)

Pr (ω|β, δ)
=

∏
i∈ζ(δ)Oi(s

′, β, ωi)
∑
s T (s, β, s′)b(s)∑

s′′
∏
i∈ζ(δ)Oi(s

′′, β, ωi)
∑
s T (s, β, s′′)b(s)

.

(1)

The goal is to learn a pure policy to maximize E[
∑∞
t=0 γ

tR(st, βt)|b0] where βt ∈ Apl. A pure
policy is a mapping from beliefs to actions π : B → A, where B is the set of beliefs that constructs
a (|S| − 1)-dimensional probability simplex.

The POMDP solvers apply value iteration (Sondik, 1978), a dynamic programming technique, to
find an optimal policy. Let V be a value function that maps beliefs to values in R. The following
recursive expression holds for V :

Vt(b) = max
a

(∑
s∈S

b(s)R(s, a) + γ
∑
ω∈Ω

Pr(ω|b, a)Vt−1(b
′a,ω
b )

)
. (2)

The value iteration converges to the optimal value function V ∗ which satisfies the Bellman optimal-
ity equation (Bellman, 1957). Once the optimal value function is learned, an optimal policy can be
derived. An important outcome of (2) is that at any horizon, the value function is piecewise-linear
and convex (Smallwood & Sondik, 1973) and hence, can be represented by a finite set of hyper-
planes. Each hyperplane is associated with an action. Let α denote the corresponding vector of a
hyperplane and let Γt to be the set of α vectors at horizon t. Then,

Vt(b) = max
α∈Γt

α · b. (3)

This fact has motivated approximate point based solvers that try to approximate the value function
by updating the hyperplanes over a finite set of belief points.

Next, we formulate the joint perception and planning problem.
Problem 1. Let P = (S,A, k, T,Ω, O,R, γ) to denote an AP2-POMDP and b0 to be an initial
belief. The goal is to learn a pure belief-based policy π(b) = (β, δ) such that the expected discounted
cumulative reward is maximized, i.e, π∗ = argmaxπ E [

∑∞
t=0 γ

tR(st, π(bt))|b0].
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3 ACTIVE PERCEPTION WITH GREEDY SCHEME

Algorithm 1 Greedy policy for perception action

1: Input: AP2-POMDP P = (S,A, k, T,Ω, O,R, γ),
Current belief b, Planning action β.

2: Output: Perception action δ.
3: Initialize X = {1, 2, . . . , n}, ζ = ∅.
4: for l = 1, . . . , k do
5: j∗ = argmaxj∈X\ζ −H(s|b̃βb ,

⋃
i∈ζ∪{j} ω

i)

6: ζ ← ζ ∪ {j∗}
7: end for
8: return δ corresponding to ζ.

For variety of performance metrics,
finding an optimal subset of in-
formation sources poses a compu-
tationally challenging combinatorial
optimization problem that is NP-
hard (Williams & Young, 2007).
Augmenting POMDP planning ac-
tions with

(
n
k

)
active perception ac-

tions results in a combinatorial ex-
pansion of the action space. There-
upon, it is infeasible to directly ap-
ply existing POMDP solvers to Prob-
lem 1. Instead of concatenating both
sets of actions and treating them similarly, we propose a greedy strategy for selecting perception
actions that aims to pick the information sources that result in minimal uncertainty about the state.
The key enabling factor is that the perception actions does not affect the transition, consequently,
we can decompose the single-step belief update in (1) into two steps:

b̃βb (s′) =
∑
s

T (s, β, s′)b̃(s), b
′δ,ω

b̃
(s′′) =

∏
i∈ζ(δ)Oi(s

′′, β, ωi)b̃(s′′)∑
s′
∏
i∈ζ(δ)Oi(s

′, β, ωi)b̃(s′)
. (4)

This in turn implies that after a transition is made, the agent should pick a subset of observations
that lead to minimal uncertainty in b

′δ,ω

b̃
.

Algorithm 2 BackUp step for AP2-POMDP

1: Input: AP2-POMDP P = (S,A, k, T,Ω, O,R, γ), Current set of belief points Bt, Current set
of α vectors Γt−1.

2: Output: Next set of α vectors Γt.
3: Initialize Γt = ∅, Γb,βt = ∅ for all b ∈ Bt and β ∈ Apl.
4: for β ∈ Apl do
5: Γβ,∗t ← αβ,∗(s) = R(s, β)
6: for b ∈ Bt do
7: δ̄ = Greedy argmaxδ∈Aprf(ζ(δ)) ; Γb,β,ωt = ∅
8: for ω ∈ Ωi1 × . . .× Ωik , ij ∈ ζ(δ̄) do
9: for α ∈ Γt−1 do

10: αb,β,ω(s) = γ
∑
s′∈S

∏
ij∈ζ(δ̄)Oi(s

′, β, ωij )T (s, β, s′)α(s′); Γb,β,ωt ← Γb,β,ωt ∪ αb,β,ω
11: end for
12: end for
13: αb,β = αβ,∗ +

∑
ω∈Ωi1

×...×Ωik

ij∈ζ(δ̄)
argmaxα∈Γb,β,ωt

α.b ; Γb,βt ← Γb,βt ∪ αb,β

14: end for
15: end for
16: for b ∈ Bt do
17: αb = argmaxα∈Γb,βt ,β∈Apl α.b ; Γt = Γt ∪ αb
18: end for
19: return Γt.

To quantify state uncertainty, we use Shannon entropy of the belief. Since the observation values
are unknown before selecting the sensors, we optimize conditional entropy that yields the expected
value of entropy. With some algebraic manipulation, one obtains the conditional entropy of state
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given current belief with respect to δ as:

H(s|b, δ) =−
∑

ωi1∈Ωi1

. . .
∑

ωik∈Ωik

∑
s∈S

(
b(s)

∏
ij∈ζ(δ)

Oij (s, β, ω
ij )

log

(
b(s)

∏
ij∈ζ(δ)Oij (s, β, ω

ij )∑
s′∈S b(s

′)
∏
ij∈ζ(δ)Oij (s

′, β, ωij )

))
,

(5)

where ζ(δ) = {i1, i2, . . . , ik}. It is worth mentioning that b is the current distribution of s and is
explicitly written only for the purpose of better clarity, otherwise,H(s|b, δ) = H(s|δ). To minimize
entropy, we define the objective function as the following set function:

f(ζ) = H(s|b̃βb )−H(s|b̃βb ,
⋃
i∈ζ

ωi) (6)

and the optimization problem as:
δ∗ = arg max

δ∈Apr
f(ζ(δ)). (7)

We propose a greedy algorithm, outlined in Algorithm 1 to find an efficient solution to (7). The
guarantee for the performance of the proposed greedy algorithm is stated in the next theorem.
Theorem 1. Let ζ∗ denote the optimal subset of observations with regard to objective function f(ζ),
and ζg denote the output of the greedy algorithm in Algorithm 1. Then, the following performance
guarantee holds:

H(s|b̃βb ,
⋃
i∈ζg

ωi) ≤ 1

e
H(s|b̃βb ) +

(
1− 1

e

)
H(s|b̃βb ,

⋃
i∈ζ∗

ωi). (8)

Although Theorem 1 proves that the entropy of the belief point achieved by the greedy algorithm
is close to the entropy of the belief point from the optimal solution, the key question is whether
the value of these points are close. We prove that at each time step, in expectation, the value from
greedy scheme is close to the value from optimal selection with regard to (7).
Theorem 2. Let the agent’s current belief to be b and its planning action to be β. Consider the op-
timization problem in (7), and let δ∗ and δg denote the optimal perception action and the perception
action obtained by the greedy algorithm, respectively. It holds that E[‖bg − b∗‖1] ≤ C1, where b∗
and bg are the updated beliefs according to (4) and C1 is a constant value.
Theorem 3. Instate the notation and hypothesis of Theorem 2. Additionally, let V to be the true
value function for AP2-POMDP. It holds that E[V (bg) − V (b∗)] ≤ C2, where C2 depends on C1

and parameters of the AP2-POMDP.

4 PERCEPTION-AWARE POINT-BASED VALUE ITERATION

We propose a novel point-based value iteration algorithm to approximate the value function for
AP2-POMDPs. The algorithm relies on the performance guarantee of the proposed greedy ob-
servation selection in previous section. The general procedure for a point-based solver consists
of iterative belief point sampling, Bellman backup, and hyperplane pruning, until value function
convergence (Araya et al., 2010). We develop a new BackUp step for AP2-POMDPs that can be
combined with any sampling and pruning method in other solvers, such as the ones developed by
Spaan & Vlassis (2005), Kurniawati et al. (2008), and Smith & Simmons (2012).

In point-based solvers each witness belief point is associated with an α vector and an action. Never-
theless, for AP2-POMDPs, each witness point is associated with two actions, β and δ. We compute
δ based on greedy maximization of (7) so that given b and β, δ is uniquely determined. Henceforth,
we can rewrite (2) using (3) to obtain:

Vt(b) = max
β

(∑
s∈S

b(s)R(s, β) + γ
∑

ω∈Ωi1
×...×Ωik

ij∈ζ(δ̄)

max
α∈Γt−1

∑
s∈S

∑
s′∈S

α(s′)×

∏
ij∈ζ(δ̄)

Oi(s
′, β, ωij )T (s, β, s′)b(s)

)
.

(9)
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(a) 1-D grid
(b) Average discounted cumula-
tive reward (c) Average entropy over time

(d) 2-D grid
(e) Random percep-
tion algorithm

(f) Greedy perception
algorithm

Figure 1: Simulation settings and results for 1-D and 2-D robotic navigation tasks.

where δ̄ = argmaxδ∈Apr f(ζ(δ)) and f is computed at b̃βb .

Based on the derivation in (9), we develop the BackUp step detailed in Algorithm 2 to compute the
new set of α vectors from the previous ones using Bellman backup operation.

5 SIMULATION RESULTS

We implement the proposed solver for AP2-POMDPs. We initialize the belief set by uniform sam-
pling from ∆B (Devroye, 1986) and keep it fixed. However, one can integrate any sampling method
such as the ones proposed by Smith & Simmons (2012), and Kurniawati et al. (2008). The α vectors
are initialized by 1

1−γmins,aR(s, a).Ones(|S|) (Shani et al., 2013).

The first scenario models a robot that is moving in a 1-D discrete environment. The robot can move
to adjacent cells by its navigation actions Apl = {left, right, stop} and has probabilistic transi-
tions. The robot relies on a set of cameras for localization. To model the effect of robot’s position
on the accuracy of cameras’ measurements, we use a binomial distribution with its mean at the cell
that camera is on. The robot’s objective is to reach a specific cell in the map. For that purpose, at
each time step, the robot picks a navigation action and selects k cameras from the set of n cam-
eras. We evaluate the computed policy by running 1000 Monte Carlo simulations. The robot starts
at the origin and its initial belief is uniform. Figure 1-(b) demonstrates the discounted cumulative
reward, averaged over 1000 runs, for random selection of 1 and 2 cameras, and greedy selection
of 1 and 2 cameras. It shows that the greedy selection significantly outperforms the random selec-
tion. Figure 1-(c) depicts the belief entropy over the time. The lower entropy of greedy selection,
compared to random selection, shows less uncertainty of the robot when taking planning actions.

The second scenario is a 2-D variant of the first scenario. The navigation actions of the robot are
Apl = {up, right, down, left, stop}. The rest of the setting is similar to 1-D case, except now
the robot must avoid the obstacles in the map. We applied the proposed solver with both random
perception and greedy perception on the 2-D example. Figure 1-(e&f) illustrates the normalized
frequency of visiting each state for each perception algorithm. It can be seen that the policy learned
by greedy active perception leads to better obstacle avoidance.
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