
Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

PROVABLY EFFICIENT RL WITH RICH OBSERVATIONS
VIA LATENT STATE DECODING

Simon S. Du
CMU

Akshay Krishnamurthy
MSR, NY

Nan Jiang
UIUC

Alekh Agarwal
MSR, Redmond

Miroslav Dudı́k
MSR, NY

John Langford
MSY, NY

ABSTRACT

We study the exploration problem in episodic MDPs with rich observations gener-
ated from a small number of latent states. Under certain identifiability assumptions,
we demonstrate how to estimate a mapping from the observations to latent states
inductively through a sequence of regression and clustering steps—where previ-
ously decoded latent states provide labels for later regression problems—and use
it to construct good exploration policies. We provide finite-sample guarantees on
the quality of the learned state decoding function and exploration policies, and
complement our theory with an empirical evaluation on a class of hard explo-
ration problems. Our method exponentially improves over Q-learning with naı̈ve
exploration, even when Q-learning has cheating access to latent states.

1 INTRODUCTION

We study reinforcement learning (RL) in episodic environments with rich observations, such as
images and texts. While many modern empirical RL algorithms are designed to handle such settings
(see, e.g., Mnih et al., 2015), relatively few works focus on the question of strategic exploration in this
literature (Ostrovski et al., 2017; Osband et al., 2016) and the sample efficiency of these techniques is
not theoretically understood.

In this work we consider RL problems with latent-state structure. We consider recovering the latent-
state structure explicitly by learning a decoding function (from a large set of candidates) that maps a
rich observation to the corresponding latent state. We show that our algorithms are:

Provably sample-efficient: Under certain identifiability assumptions, we recover a mapping from
the observations to underlying latent states as well as a good exploration policy using a number
of samples which is polynomial in the number of latent states, horizon and the complexity of
the decoding function class with no explicit dependence on the observation space size. Thus we
significantly generalize beyond the works of Dann et al. (2018) who require deterministic dynamics
and Azizzadenesheli et al. (2016) whose guarantees scale with the observation space size.

Computationally practical: Unlike many prior works in this vein, our algorithm is easy to implement
and substantially outperforms naı̈ve exploration in experiments, even when the baselines have cheating
access to the latent states.

The main challenge in learning the decoding function is that the hidden states are never directly
observed. Our key novelty is the use of a backward conditional probability vector (Equation 1)
as a representation for latent state, and learning the decoding function via conditional probability
estimation, which can be solved using least squares regression.

2 SETTING AND TASK DEFINITION

We begin by introducing some basic notation. We write [h] to denote the set {1, . . . , h}. For any
finite set S, we write U(S) to denote the uniform distribution over S. We write4d for the simplex in
Rd. Finally, we write ‖·‖ and ‖·‖1, respectively, for the Euclidean and the `1 norms of a vector.

1

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

2.1 BLOCK MARKOV DECISION PROCESS

In this paper we introduce and analyze a block Markov decision process or BMDP. It refers to an
environment described by a finite, but unobservable latent state space S, a finite action space A,
with |A| = K, and a possibly infinite, but observable context space X . The dynamics of a BMDP is
described by the initial state s1 ∈ S and two conditional probability functions: the state-transition
function p and context-emission function q, defining conditional probabilities p(s′ | s, a) and q(x | s)
for all s, s′ ∈ S, a ∈ A, x ∈ X .1

We consider episodic learning tasks with a finite horizon H . In each episode, the environment starts
in the state s1. In the step h ∈ [H] of an episode, the environment generates a context xh ∼ q(· | sh),
the agent observes the context xh (but not the state sh), takes an action ah, and the environment tran-
sitions to a new state sh+1 ∼ p(· | sh, ah). The sequence (s1, x1, a1, . . . , sH , xH , aH , sH+1, xH+1)
generated in an episode is called a trajectory. We emphasize that a learning agent does not observe
components sh from the trajectory.

So far, our description resembles that of a partially observable Markov decision process (POMDP). To
finish the definition of BMDP, and distinguish it from a POMDP, we make the following assumption:

Assumption 2.1 (Block structure). Each context x uniquely determines its generating state s. That
is, the context space X can be partitioned into disjoint blocks Xs, each containing the support of the
conditional distribution q(· | s).

The block structure implies the existence of a perfect decoding function f∗ : X → S, which maps
contexts into their generating states. To streamline our analysis, we make a standard assumption
for episodic settings. We assume that S can be partitioned into disjoints sets Sh, h ∈ [H + 1], such
that p(· | s, a) is supported on Sh+1 whenever s ∈ Sh. We refer to h as the level and assume that
it is observable as part of the context, so the context space is also partitioned into sets Xh. We use
notation S[h] = ∪`∈[h]S` for the set of states up to level h, and similarly define X[h] = ∪`∈[h]X`. We
assume that |Sh| ≤ M . We seek learning algorithms that scale polynomially in parameters M , K
and H , but do not explicitly depend on |X |, which might be infinite.

2.2 SOLUTION CONCEPT: COVER OF EXPLORATORY POLICIES

In this paper, we focus on the problem of exploration. Specifically, for each state s ∈ S , we seek an
agent strategy for reaching that state s. We formalize an agent strategy as an h-step policy, which is a
map π : X[h] → A specifying which action to take in each context up to step h. When executing an
h-step policy π with h < H , an agent acts according to π for h steps and then arbitrarily until the
end of the episode (e.g., according to a specific default policy).

For an h-step policy π, we write Pπ to denote the probability distribution over h-step trajectories
induced by π. We write Pπ(E) for the probability of an event E . For example, Pπ(s) is the probability
of reaching the state s when executing π.

We also consider randomized strategies, which we formalize as policy mixtures. An h-step policy
mixture η is a distribution over h-step policies. When executing η, an agent randomly draws a policy
π ∼ η at the beginning of the episode, and then follows π throughout the episode. The induced
distribution over h-step trajectories is denoted Pη .

Our algorithms create specific policies and policy mixtures via concatenation. Specifically, given an
h-step policy π, we write π � a for the (h+ 1)-step policy that executes π for h steps and chooses
action a in step h+ 1. Similarly, if η is a policy mixture and ν a distribution over A, we write η � ν
for the policy mixture equivalent to first sampling and following a policy according to η and then
independently sampling and following an action according to ν.

We finally introduce two key concepts related to exploration: maximum reaching probability and
policy cover.

1For continuous context spaces, q(· | s) describes a density function relative to a suitable measure (e.g.,
Lebesgue measure).

2

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

Definition 2.1 (Maximum reaching probability.). For any s ∈ S , its maximum reaching probability
µ(s) is µ(s) := maxπ Pπ(s), where the maximum is taken over all maps X[H] → A. The policy
attaining the maximum for a given s is denoted π∗s .2

Without loss of generality, we assume that all the states are reachable, i.e., µ(s) > 0 for all s. We
write µmin = mins∈S µ(s) for the µ(s) value of the hardest-to-reach state. Given maximum reaching
probabilities, we formalize the task of finding policies that reach states s as the task of finding an
ε–policy cover in the following sense:

Definition 2.2 (Policy cover of the state space). We say that a set of policies Πh is an ε–policy cover
of Sh if for all s ∈ Sh there exists an (h− 1)-step policy π ∈ Πh such that Pπ(s) ≥ µ(s)− ε. A set
of policies Π is an ε–policy cover of S if it is an ε–policy cover of Sh for all h ∈ [H + 1].

3 EMBEDDING APPROACH

3.1 EMBEDDINGS AND FUNCTION APPROXIMATION

In order to construct the decoding function f , we learn low-dimensional representations of contexts as
well as latent states in a shared space, namely ∆MK . We learn embedding functions g : X → ∆MK

for contexts and φ : S → ∆MK for states, with the goal that g(x) and φ(s) should be close if and
only if x ∈ Xs. Such embedding functions always exist due to the block-structure: for any set of
distinct vectors {φ(s)}s∈S , it suffices to define g(x) = φ(s) for x ∈ Xs. We consider using function
approximation to learn the embedding functions and we assume the realizability.

Assumption 3.1 (Realizability). For any h ∈ [H + 1] and φ : Sh → 4MK , there exists gh ∈ G
such that gh(x) = φ(s) for all x ∈ Xs and s ∈ Sh.

As we alluded to earlier, we learn context embeddings gh by solving supervised learning problems.
In fact, we only require the ability to solve least squares problems. Specifically, we assume access to
an algorithm for solving vector-valued least-squares regression over the class G. We refer to such an
algorithm as the ERM oracle:

Definition 3.1 (ERM Oracle). Let G be a function class that maps X to 4MK . An empirical
risk minimization oracle (ERM oracle) for G is any algorithm that takes as input a data set D =

{(xi,yi)}ni=1 with xi ∈ X , yi ∈ 4MK , and computes argming∈G
∑

(x,y)∈D ‖g(x)− y‖2.

3.2 BACKWARD PROBABILITY VECTORS AND SEPARABILITY

For any distribution P over trajectories, we define backward probabilities as the conditional probabili-
ties of the form P(sh−1, ah−1 | sh). For any distribution ν over (sh−1, ah−1) , any s ∈ Sh−1, a ∈ A
and s′ ∈ Sh, the backward probability is defined as

bν(s, a | s′) =
p(s′ | s, a) ν(s, a)∑
s̃,ã p(s

′ | s̃, ã) ν(s̃, ã)
. (1)

For a given s′ ∈ Sh, we collect the probabilities bν(s, a | s′) across all s ∈ Sh−1, a ∈ A into
the backward probability vector bν(s′) ∈ 4MK , padding with zeros if |Sh−1| < M . Backward
probability vectors are at the core of our approach, because they correspond to the state embeddings
φ(s) approximated by our algorithms. Our algorithms require that bν(s′) for different states s′ ∈ Sh
are sufficiently separated from one other for a suitable choice of ν:

Assumption 3.2 (γ-Separability). There exists γ > 0 such that for any h ∈ {2, . . . ,H + 1} and any
distinct s′, s′′ ∈ Sh, the backward probability vectors with respect to the uniform distribution are
separated by a margin of at least γ, i.e., ‖bν(s′)− bν(s′′)‖1 ≥ γ, where ν = U(Sh−1 ×A).

The key property that makes vectors bν(s′) algorithmically useful is that they arise as solutions
to a specific least squares problem with respect to data generated by a policy whose marginal
distribution over (sh−1, ah−1) matches ν. Let e(s,a) denote the vector of the standard basis in RMK

corresponding to the coordinate indexed by (s, a) ∈ Sh−1 ×A. Then the following statement holds:

2It suffices to consider maps X[h] → A for s ∈ Sh+1.

3

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

Theorem 3.1. Let ν be a distribution supported on Sh−1 × A and let ν̃ be a distribution
over (s, a, x′) defined by sampling (s, a) ∼ ν, s′ ∼ p(· | s, a), and x′ ∼ q(· | s′). Let

gh ∈ argming∈G Eν̃
[∥∥g(x′)− e(s,a)

∥∥2] . Then, under Assumption 3.1, every minimizer gh sat-

isfies gh(x′) = bν(s′) for all x′ ∈ Xs′ and s′ ∈ Sh.

4 ALGORITHM FOR SEPARABLE BMDPS

With the main components defined, we can now derive our algorithm for learning a policy cover in a
separable BMDP.

The algorithm proceeds inductively, level by level. On each level h, we learn the following objects:

• The set of discovered latent states Ŝh ⊆ [M] and a decoding function f̂h : X → Ŝh, which allows
us to identify latent states at level h from observed contexts.

• The estimated transition probabilities p̂(ŝh | ŝh−1, a) across all ŝh−1 ∈ Ŝh−1, a ∈ A, ŝh ∈ Ŝh.
• A set of (h− 1)-step policies Πh = {πŝ}ŝ∈Ŝh .

Algorithm 1 constructs Ŝh, f̂h, p̂ and Πh level by level. Given these objects up to level h− 1, the
construction for the next level h proceeds in the following three steps, annotated with the lines in
Algorithm 1 where they appear:

(1) Regression step: learn ĝh (lines 7–9). We collect a dataset of trajectories by repeatedly
executing a specific policy mixture ηh. We use f̂h−1 to identify ŝh−1=f̂h−1(xh−1) on each
trajectory, obtaining samples (ŝh−1, ah−1, xh) from ν̃ induced by ηh. The context embedding ĝh
is then obtained by solving the empirical version of the regression problem in Theorem 3.1.

(2) Clustering step: learn φ̂ and f̂h (lines 10–12). Thanks to Theorem 3.1, we expect that ĝh(x′) ≈
gh(x′) = bν(s′) for the distribution ν(ŝh−1, ah−1) induced by ηh.3 Thus, all contexts x′ generated
by the same latent state s′ have embedding vectors ĝh(x′) close to each other and to bν(s′). Thanks
to separability, we can therefore use clustering to identify all contexts generated by the same latent
state, and this procedure is sample-efficient since the embeddings are low-dimensional vectors. Each
cluster corresponds to some latent state s′ and any vector ĝh(x′) from that cluster can be used to
define the state embedding φ̂(s′). The decoding function f̂h is defined to map any context x′ to the
state s′ whose embedding φ̂(s′) is the closest to ĝh(x′).

(3) Dynamic programming: construct Πh (lines 13–19). Finally, with the ability to identify states
at level h via f̂h, we can use collected trajectories to learn an approximate transition model p̂(ŝ′ | ŝ, a)
up to level h. This allows us to use dynamic programming to find policies that (approximately)
optimize the probability of reaching any specific state s′ ∈ Sh. The dynamic programming finds
policies ψŝ′ that act by directly observing decoded latent states. The policies πŝ′ are obtained by
composing ψŝ′ with the decoding functions {f̂`}`∈[h−1].
The next theorem guarantees that with a polynomial number of samples, Algorithm 1 finds a small
ε–policy cover.4

Theorem 4.1 (Sample Complexity of Algorithm 1). Fix any ε = O
(

µ3
minγ

M4K3H

)
and a failure proba-

bility δ > 0. Set Ng = Ω̃
(
M4K4H log |G|

εµ3
minγ

2

)
, Nφ = Θ̃

(
MK
µmin

)
, Np = Ω̃

(
M2KH2

µminε2

)
, τ = γ

30MK . Then

with probability at least 1− δ, Algorithm 1 returns an ε–policy cover of S, with size at most MH .5

In addition to dependence on the usual parameters like M,K,H and 1/ε, our sample complexity
also scales inversely with the separability margin γ and the worst-case reaching probability µmin.
Compared with Azizzadenesheli et al. (2016), there is no explicit dependence on |X |, although they
make spectral assumptions instead of the explicit block structure.

3Theorem 3.1 uses distributions ν and ν̃ over true states sh−1, but its analog also holds for distributions over
ŝh−1, as long as decoding is approximately correct at the previous level.

4The Õ(·), Ω̃(·), and Θ̃(·) notation suppresses factors that are polynomial in logM , logK, logH and
log(1/δ).

5 We refer readers to https://arxiv.org/abs/1901.09018 for the full proof.

4

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

0.0 0.2 0.4 0.6 0.8 1.0Horizon = context dimension
0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
to

 so
lv

e

5 10 20 50

De
te

rm
in

ist
ic

Lock-Bernoulli (PCID uses linear model)

St
oc

ha
st

ic

5 10 20 50

103

104

105 Lock-Gaussian (PCID uses linear model)

103

104

105

OracleQ (No noise) QLearning (No noise) PCID:Lin (Ber noise) PCID:Lin (Gauss = 0.1)
PCID:NN (Gauss = 0.1)

PCID:Lin (Gauss = 0.2)
PCID:NN (Gauss = 0.2)

PCID:Lin (Gauss = 0.3)
PCID:NN (Gauss = 0.3)

5 10 20 50

103

104

105 Lock-Gaussian (PCID uses NN model)

103

104

105

Note: Larger markers mean that the next point is off the plot.

Figure 1: Time-to-solve against problem difficulty for the Lock environment with two observation
processes and function classes. Left: Lock-Bernoulli environment. Center: Lock-Gaussian with linear
functions, Right: Lock-Gaussian with neural networks. Top row: deterministic latent transitions.
Bottom row: stochastic transitions with switching probability 0.1. ORACLEQ and QLEARNING are
cheating and operate directly on latent states.

5 EXPERIMENTS

The environments. All environments share the same latent structure, and are a form of “combination
lock,” with H levels, 3 states per level, and 4 actions. Non-zero reward is only achievable from
states s1,h and s2,h. From s1,h and s2,h one action leads with probability 1− α to s1,h+1 and with
probability α to s2,h+1, another has the flipped behavior, and the remaining two lead to s3,h+1. All
actions from s3,h lead to s3,h+1. The “good” actions are randomly assigned for every state. From
s1,H and s2,H , two actions receive Ber(1/2) reward; all others provide zero reward. The start state is
s1,1. We consider deterministic variant (α = 0) and stochastic variant (α = 0.1).

We also consider two observation processes, which we use only for our algorithm, while the baselines
operate directly on the latent state space. In Lock-Bernoulli, the observation space is {0, 1}H+3

where the first 3 coordinates are reserved for one-hot encoding of the state and the last H coordinates
are drawn iid from Ber(1/2). In Lock-Gaussian, the observation space is RH+3. As before the first
3 coordinates are reserved for one-hot encoding of the state, but this encoding is corrupted with
Gaussian noise. Formally, if the agent is at state si,h the observation is ei+v ∈ R3+H, where ei is one
of the first three standard basis vectors and v has N (0, σ2) entries. We consider σ ∈ {0.1, 0.2, 0.3}.
Baselines, hyperparameters. We compare our algorithms against two tabular approaches that cheat
by directly accessing the latent states. The first, ORACLEQ, is the Optimistic Q-Learning algorithm
of Jin et al. (2018). The second, QLEARNING, is tabular Q-learning with ε-greedy exploration. This
algorithm serves as a baseline: any algorithm with strategic exploration should vastly outperform
QLEARNING, even though it is cheating.

Results. The results are in Figure 1 in a log-linear plot. First, QLEARNING works well for small
horizon problems but cannot solve problems with H ≥ 15 within 100K episodes, which is not
surprising.6 The performance curve for QLEARNING is linear, revealing an exponential sample
complexity, and demonstrating that these environments cannot be solved with naı̈ve exploration.
As a second observation, ORACLEQ performs extremely well, and as we verify in Appendix ??
demonstrates a linear scaling with H .7

In Lock-Bernoulli, PCID is roughly a factor of 5 worse than the skyline ORACLEQ for all values
of H , but the curves have similar behavior. Of course PCID is an exponential improvement over
QLEARNING with ε-greedy exploration here. In Lock-Gaussian with linear functions, the results are
similar for the low-noise setting, but the performance of PCID degrades as the noise level increases.
For example, with noise level σ = 0.3, it fails to solve the stochastic problem with H = 40 in 100K
episodes. On the other hand, the performance is still quite good, and the scaling represents a dramatic
improvement over QLEARNING.

6We actually ran QLEARNING for 1M episodes and found it solves H = 15 with 170K episodes.
7This is incomparable with the result in Jin et al. (2018) since we are not measuring regret here.

5

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

REFERENCES

Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. Reinforcement learning
of POMDPs using spectral methods. In Conference on Learning Theory, 2016.

Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 2002.

Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E
Schapire. On oracle-efficient PAC reinforcement learning with rich observations. In Advances in
Neural Information Processing Systems, 2018.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 2010.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E. Schapire. Contex-
tual decision processes with low Bellman rank are PAC-learnable. In International Conference on
Machine Learning, 2017.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably efficient?
In Advances in Neural Information Processing Systems, 2018.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The Malmo Platform for artificial
intelligence experimentation. In International Joint Conference on Artificial Intelligence, 2016.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 2002.

Akshay Krishnamurthy, Alekh Agarwal, and John Langford. PAC reinforcement learning with rich
observations. In Advances in Neural Information Processing Systems, 2016.

Tor Lattimore and Marcus Hutter. PAC bounds for discounted MDPs. In International Conference
on Algorithmic Learning Theory, 2012.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 2015.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Advances in Neural
Information Processing Systems, 2017.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. In Advances in Neural Information Processing Systems, 2016.

Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Rémi Munos. Count-based exploration
with neural density models. In International Conference on Machine Learning, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In International Conference on Machine Learning, 2017.

David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-
Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, and Thomas Degris. The predictron:
End-to-end learning and planning. In International Conference on Machine Learning, 2017.

6

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

Algorithm 1 PCID (Policy Cover via Inductive Decoding)
1: Input:
2: Ng: sample size for learning context embeddings
3: Nφ: sample size for learning state embeddings
4: Np: sample size for estimating transition probabilities
5: τ > 0: a clustering threshold for learning latent states
6:
7: Output: policy cover Π = Π1 ∪ · · · ∪ΠH+1

8: Let Ŝ1 = {s1}. Let f̂1(x) = s1 for all x ∈ X .
9: Let Π1 = {π0} where π0 is the trivial 0-step policy.

10: Initialize p̂ to an empty mapping.
11: for h = 2, . . . ,H + 1 do
12: Let ηh = U(Πh−1)� U(A)
13: Execute ηh for Ng times. Dg ={ŝih−1, aih−1, xih}

Ng
i=1

14: for ŝh−1 = f̂h−1(xh−1).
15: Learn ĝh by calling ERM oracle on input Dg:
16: ĝh = argming∈G

∑
(ŝ,a,x′)∈Dg

∥∥g(x′)− e(ŝ,a)
∥∥2.

17: Execute ηh for Nφ times. Z = {ẑi = ĝh(xih)}Nφi=1.
18: Learn Ŝh and the state embedding map φ̂h : Ŝh → Z
19: by clustering Z with threshold τ (see Algorithm 2).
20: Define f̂h(x′) = argminŝ∈Ŝh

∥∥φ̂(ŝ)− ĝh(x′)
∥∥
1
.

21: Execute ηh for Np times. Dp ={ŝih−1, aih−1, ŝih}
Np
i=1

22: for ŝh−1 = f̂h−1(xh−1), ŝh= f̂h(xh).
23: Define p̂(ŝh | ŝh−1, ah−1)
24: equal to empirical conditional probabilities in Dp.
25: for ŝ′ ∈ Ŝh do
26: Run Algorithm 3 with inputs p̂ and ŝ′

27: to obtain (h− 1)-step policy ψŝ′ : Ŝ[h−1] → A.
28: Set πŝ′(x`)=ψŝ′(f̂`(x`)), ` ∈ [h− 1], x` ∈ X`.
29: Let Πh = (πŝ)ŝ∈Ŝh .

Algorithm 2 Clustering to Find Latent-state Embeddings.
1: Input: Data points Z = {zi}ni=1 and threshold τ > 0.
2: Output: Cluster indices Ŝ and centers φ̂ : Ŝ → Z .
3: Let Ŝ = ∅, k = 0 (number of clusters).
4: while Z 6= ∅ do
5: Pick any z ∈ Z (a new cluster center).
6: Let Z ′ = {z′ ∈ Z : ‖z− z′‖1 ≤ τ}.
7: Add cluster: k ← k + 1, Ŝ ← Ŝ ∪ {k}, φ̂(k) = z.
8: Remove the newly covered points: Z ← Z \ Z ′.

We refer readers to

7

Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019

Algorithm 3 Dynamic Programming for Reaching a State

1: Input: target state ŝ∗ ∈ Ŝh,
2: transition probabilities p̂(ŝ′ | ŝ, a)

3: for all ŝ ∈ Ŝ`, a ∈ A, ŝ′ ∈ Ŝ`+1, ` ∈ [h− 1].
4: Output: policy ψ : Ŝ[h−1] → A maximizing P̂ψ(ŝ∗).
5: Let v(ŝ∗) = 1 and let v(ŝ) = 0 for all other ŝ ∈ Ŝh.
6: for ` = h− 1, h− 2, . . . , 1 do
7: for ŝ ∈ Ŝ` do
8: ψ(ŝ) = maxa∈A

[∑
ŝ′∈Ŝ`+1

v(ŝ′) p̂(ŝ′ | ŝ, a)
]
.

9: v(ŝ) =
∑
ŝ′∈S`+1

v(ŝ′) p̂(ŝ′ | ŝ, a = ψ(ŝ)).

8

	Introduction
	Setting and Task Definition
	Block Markov Decision Process
	Solution Concept: Cover of Exploratory Policies

	Embedding Approach
	Embeddings and Function Approximation
	Backward Probability Vectors and Separability

	Algorithm for Separable BMDPs
	Experiments

