
Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

SUPPLEMENT TO
GRAPH-DQN: FAST GENERALIZATION TO NOVEL
OBJECTS USING PRIOR RELATIONAL KNOWLEDGE

Varun V. Kumar, Hanlin Tang & Arjun K. Bansal∗
Intel AI Lab
{varun.v.kumar,hanlin.tang,arjun.bansal}@intel.com

1 RELATED WORK

1.1 GRAPH BASED REINFORCEMENT LEARNING

Previous work has applied graph-based architectures to control problems (Wang et al., 2018) and
text-based games (Ammanabrolu & Riedl, 2018). In each case, the design of the architecture is
guided by the problem structure. In NerveNet (Wang et al., 2018), the state and action spaces can be
decomposed according to the anatomy of the agent; the Graph Neural Network in that study therefore
also represents the anatomy. The KG-DQN agent (Ammanabrolu & Riedl, 2018) is targeted at
games in which building a description of the relations of the world from text based interaction is a
challenge. In contrast, we used the knowledge graph to inject semantic priors into the Graph-DQN,
and trained agents to operate on visual input and achieve much larger relative gains in performance.

Whereas KG-DQN combines the knowledge graph and the state with feature concatenation in the
final layer, here we use broadcast and joint convolution operations to exchange information between
the entities in the graph and instances of that entity in the game state. We repeat this module in a deep
network to form the encoder. By pooling state features into the graph and performing convolution,
our model implements a global operation similar to the self-attention layer used in the Relational RL
architecture (Zambaldi et al., 2019). However, that model tackles the problem of learning relational
knowledge during training, without any a priori knowledge. Graph-DQN is designed to exploit
external knowledge to generalize to new objects at test time.

1.2 NATURAL LANGUAGE GUIDED RL

Previous work has used natural language instruction to train agents (Ammanabrolu & Riedl, 2018;
Co-Reyes et al., 2018; Fu et al., 2019; Kaplan et al., 2017). Our approach is complementary to
these as the information extraction algorithms in the literature (for e.g. (Angeli et al., 2015)) could
be used to structure natural language corpora, rules or instructions as knowledge graphs, which can
be provided to Graph-DQN. We believe that graphs could more generally serve as an efficient and
interpretable representational mechanism for prior knowledge or instruction.

Several studies have attempted to extract objects from visual input using unsupervised or semi-
supervised methods (Chen et al., 2016; Cheung et al., 2014; Higgins et al., 2016; 2017; Ionescu
et al., 2018; Kingma & Welling, 2013; Locatello et al., 2018). As the focus of our study is the
combination of scene graphs and knowledge graphs, and not the extraction of symbols themselves,
we assume that our network has object level ground truth information available from the scene. For
this reason we use environments that can be programatically generated.

1.3 METALEARNING

Several prior studies study generalization to novel tasks. Techniques such as MAML (Finn et al.,
2017) train on a set of environments or tasks and attempt to learn a weight manifold on which a new
task can be learned with minimal additional examples. Here we structure the relevant information

∗Use footnote for providing further information about author (webpage, alternative address)—not for ac-
knowledging funding agencies. Funding acknowledgements go at the end of the submission.

1



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

Figure 1: Layer types in our Graph-DQN architecture, including methods to Broadcast from the
knowledge graph K to the state presentation S, Pooling from S → K, and updating the state by
jointly convolving over (S,K).

for solving the task in the form of a knowledge graph to avoid needing additional training. In
environments where such prior knowledge may be unavailable, the Graph-DQN could be augmented
with metalearning or curriculum learning. Other techniques such as DARLA (Higgins et al., 2017)
and progressive nets (Rusu et al., 2016) have studied generalization in the context of domain shifts
(e.g. from simulation to reality) but not in the context of generalization to new objects studied here.

2 GRAPH-DQN

2.1 DETAILS OF MODEL COMPONENTS

Figure 1 shows graphical depictions of the three contributed methods (Broadcast, Pooling, and
KG-Conv for transferring information between the knowledge graph and the scene representation.

2.1.1 BROADCAST

We define the function Broadcast : K → S. For each entity i in the knowledge graph, we copy
its graph representation vi to each occurrence of i in the game map. This is used to initialize the
state representation S such that we are using a common embedding to refer to entities in both K and
S. Each location (i, j) in the state is computed as

Si,j =
∑
v∈V

δv(i, j)v (1)

where δv(i, j) = 1 if the entity corresponding to v is present at location (i, j) and zero otherwise.
Thus, symbols in the game map not present in the knowledge graph are initialized with a zero vector.

2.1.2 POOLING

The reverse of Broadcast, this operation is used to update the entity representations in the knowl-
edge graph. In Pooling : S → K, we update the graph’s representation v by averaging the features
in S over all instances of entity corresponding to v in the state:

vi =
1

Nv

∑
(i,j)∈S

Wδv(i, j)Sij (2)

where Nv =
∑
S δv(i, j) is the number of instances of v in the state. Since S and V may have

different number of features, we used the weight matrix W to project from the state vectors to the
dimensionality of the vertex features in the graph.

2



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

2.1.3 KG-CONV

To update the state representation S, we augment a regular convolution layer with the knowledge
graph. In addition to applying convolutional filters to the neighborhood of a location, we also add
the node representation vi of the entity i at that location, passed through linear layer to vi to match
the number of filters in the convolution. Formally, we can describe this operation as:

Conv3×3×d(S) + Conv1×1×d(Broadcast(K)) (3)

This provides a skip connection allowing deeper layers in the network to more easily make use of
the global representations.

2.2 MODEL ARCHITECTURE

The model architecture is shown in Figure 2. First, we apply two layers of edge-conditioned graph
convolution (ECC) (Simonovsky & Komodakis, 2017) toK to enrich the node features with informa-
tion from the neighborhood of each node. Those features are then encoded in the state representation
S through a Broadcast layer. The network then consists of N repeated blocks. In each block, we
first update the knowledge graph with Pooling from the state, followed by graph convolutions.
Then, we update the state representation with a KG-Conv layer, which incorporates the updated
knowledge graph. Finally, we use a few linear layers to compute the Q-values for each action.
While this model is designed to scale to deeper blocks, in our experiments we only use N = 1
blocks.

3 SUPPLEMENTAL INFORMATION ON EXPERIMENTS

3.1 BASELINE DQN

We used DQN (Mnih et al., 2015) as the baseline RL algorithm. To keep the comparison fair, the
DQN also received symbolic input. In the Warehouse experiments, we used a convolutional network
consisting of Conv(3 × 3, 64) → Conv(3 × 3, 64) → Dense(64) → Dense(4). This model is
equivalent to the Graph-DQN architecture with the connections from the knowledge graph removed.
We performed an architecture search and did not find a model that outperformed it.

The best agent in Pacman had a deeper and wider convolutional network with four Conv(3 × 3)
layers with (64, 128, 128, 64) filters, followed by a multilayer perception of Dense(100) →
Dense(50)→ Dense(4).

In both models, after the convolutional layers, we computed a per-channel mean over the 2D map
and passed the resulting vector into the multilayer perceptron (MLP).

We validated our implementation of the algorithm by comparing our performance on the Cartpole
and Pong environments with those in Coach (Caspi et al., 2017) and Ptan (Lap). Software was
implemented in Pytorch (Paszke et al., 2017). OpenAI Gym (Bro) and pycolab (Stepleton, 2017)
were used to implement the environments.

3.2 HYPERPARAMETERS

We ran our experiments using the Adam optimizer with learning rate of 0.0001 in the Warehouse en-
vironments and 0.00025 in Pacman (Kingma & Ba, 2015). We used a replay buffer size of 100,000
throughout; at every step, we sampled 32 transitions from the buffer and trained the agent by min-
imizing the L2 loss. In the Warehouse environments, we allowed the agent to run for 10,000 steps
before commencing training.

3



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

Figure 2: Graph-DQN architecture. The knowledge graph is first operated on by graph convo-
lution layers (GraphConv-ECC) to enrich the node features to d = 64 dimensions (Simonovsky
& Komodakis, 2017). We then use Broadcast to create a compatible scene representation
S ∈ R10×10×d, indicated here by the cube. We then apply N blocks (blue dotted rectangle). In
each block, we first update the knowledge graph K via Pooling and Graph Convolution. Then,
we update S using a joint convolution over S and K. Finally, a small MLP computes the Q-values
for the actions.

4



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

4 SUPPLEMENTAL RESULTS

4.1 KNOWLEDGE GRAPH TYPES

In order to determine whether the results in Figure 1 (in extended abstract) are sensitive to the
choice of the knowledge graph architecture, we trained the Graph-DQN model with variants of the
base knowledge graph, as shown in Figure 3:

1. Base: Knowledge graph was cropped to entities that were present in the scene and the edges
between them

2. Same edges: Knowledge graph had same edge labels for all edges. No distinct relationships
were encoded, but connectivity was same as the base knowledge graph

3. No edges: All edges were removed.

4. Fully connected: Nodes in the knowledge graph were fully connected, with the same edge
label for all edges.

5. Fully connected (distinct): Nodes in the knowledge graph were fully connected, with dis-
tinct edge labels for each edge.

6. Complete: Complete knowledge graph is provided for both training and testing. No crop-
ping to entities only present in the scene was performed.

When we removed the edge distinctiveness (‘Same Edges’), the model still trained, but failed to
generalize to novel objects. If we removed edges entirely (‘No Edges’), the performance is the same
as the baseline DQN. These results show that encoding the game structure into the knowledge graph
is important for generalizing to the test environment but not necessary for the training environments.

Surprisingly, when the knowledge graph is fully connected (‘FC’ and ‘FC-distinct’), the model does
not train, suggesting that the prior structure cannot be learned by Graph-DQN. If the complete graph
is available during training, including nodes for objects that only appear in the test environments, the
model generalizes to near-optimal performance (see orange lines in ‘Complete’). In this condition,
even though the object ‘c’ is not in the training environment, gradients still flow through the A→ c
edge. To avoid any contamination during training into the knowledge graph of information about
ball-bucket object pairs seen during test, for the base condition we crop the knowledge graph only
to entities (and corresponding edges) seen in the training environments.

4.2 WHAT DOES THE WAREHOUSE AGENT LEARN?

In addition to Pacman, we also ran experiments with Warehouse where we took an agent trained on
the knowledge graph, and observed its behavior when the input knowledge graph was altered (Figure
4). We were able to manipulate the agent behavior, and confirm that the learned edge semantics
match the game structure and can be applied to novel objects. Just by changing the knowledge
graph at test time, the agent can be manipulated to push buckets into balls, or push balls into other
balls.

5 DISCUSSION

Here we show that using knowledge graphs to provide DQNs information about entities and their
inter-relationships provides a way to facilitate faster learning. In addition, this provides a framework
for faster generalization to new entities with similar relationships. We tested this generalization with
sampling from various numbers of object pairs in train and test environments. We compared the
Graph-DQN method to baselines with Conv-DQN or Graph-DQN without edges in the knowledge
graph. Graph-DQN significantly outperformed the baseline, and was able to generalize to novel
objects.

Our approach is complementary to other approaches in RL that strive to improve sample efficiency
and generalization such as hierarchical RL (Kulkarni et al., 2016), metalearning (Finn et al., 2017),
or better exploration policies (Ecoffet et al., 2018) and can be combined as such with these ap-
proaches to build better overall systems.

5



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

Figure 3: Model performance when trained on various knowledge graph types, in the one-one, two-
one, and five-two environments in our most challenging Warehouse environment (buckets-repeat).
Tested types are described in the paper. Train performance in blue, and test performance in orange.
Shaded errors indicate the standard error over n = 10 repetitions. Results in other environments are
similar, but omitted for space reasons. See Supplement for additional environments.

For future work, ablation studies on Graph-DQN can help determine when and how the scene and
knowledge graphs should exchange information. Attempts to learn the knowledge graph during
training were not successful (see ’fully connected’ in Figure 3), and we speculate that graph attention
models (Velickovic et al., 2018) could help prune the graph to only the useful relations. We used
simple one-hot edge features throughout, whereas one could use word embeddings (Mikolov et al.,
2013; Sa et al., 2018) to seed the knowledge graph with semantic information. We could also test
on previously published environments such as BoxWorld (Zambaldi et al., 2019), if code becomes
available, as well as environments where multiple properties of entities need to be combined.

6 FUTURE DIRECTIONS

6.1 SCENES

The use of scene graphs could provide a framework to handle partial observability by building out
portions of the environment as they are explored and storing them in the scene graph. As models
that can extract objects from frames improve (Chen et al., 2016; Cheung et al., 2014; Higgins et al.,
2016; Ionescu et al., 2018; Kingma & Welling, 2013; Locatello et al., 2018), connecting the outputs
of these models as inputs to the models developed here could provide a mechanism to go directly
from pixels to actions.

6.2 INTERPRETABILITY

The knowledge graph provides an interpretable way to instruct the Deep RL system the rules of
the game. While not explored here these rules could include the model of the environment facili-
tating use of Graph-DQN in model-based RL. Future work could explore whether the structure of
the knowledge graph combined with the interpretability of the nodes and edges could serve as a
mechanism to overcome catastrophic forgetting. For example, new entities and relationships could
be incrementally added to the knowledge graph encoded in a way that is compatible with existing
relationships and with potentially minimal disruption to existing entities and their relationships. A

6



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

Figure 4: Manipulating agent behavior. We use an already trained agent, and manipulated its be-
havior at test time by modifying the input knowledge graph. For each manipulation, we show the
resulting knowledge graph, the game state, and the resulting agent behavior. These studies show that
the agent learned the semantic meaning of edges (’push’, ’target’) that we intended, and are able to
apply those learned relations to different objects. For example, the trained agent can be manipulated
to push buckets into balls, or balls into other balls without any additional training.

limitation is that even though the knowledge graph itself is interpretable, once the messages from
the knowledge graph are combined with messages in the scene graph we sacrifice interpretability in
favor of the learning power of gradient based Deep Learning.

6.3 KNOWLEDGE GRAPH

While we are hand coding the knowledge graph in this study, future work could learn the knowl-
edge graph directly from a set of environments, or via information extraction approaches on text
corpora, or learn graph attention models over existing large knowledge graphs (Angeli et al.,
2015; Beetz et al., 2015; Bollacker et al., 2008; Lenat et al., 1986; Liu & Singh, 2004; Saxena
et al., 2014; Suchanek et al., 2007). Knowledge graphs could also be generalized beyond the
〈subject, relation, object〉 triplet structure to incorporate prior or instructional information in the
form of computational graphs (Abadi et al., 2016; Al-Rfou et al., 2016; Cyphers et al., 2018; Wol-
fram).

7



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

6.4 ENVIRONMENTS

While we limited our analysis here to relatively small environments to test the fundamental aspects
of our approach, scaling to larger environments is another obvious direction. Environments such as
OpenAI Retro (Nichol et al., 2018) or CoinRun (Cobbe et al., 2018) have helped spark an interest
in the problem of generalization in Deep RL. However, the lack of readily available ground truth
and inability to programatically generate levels hinders a rigorous development of algorithmic ap-
proaches to solve this problem using Retro. We believe that further development of benchmarks for
generalization in Deep RL (Packer et al., 2018) that enable programmatic game creation and make
ground truth accessible will help the field.

REFERENCES

Martn Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. arXiv:1603.04467, 2016.

Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermüller, Dzmitry Bahdanau,
Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, Yoshua
Bengio, Arnaud Bergeron, James Bergstra, Valentin Bisson, Josh Bleecher Snyder, Nicolas
Bouchard, Nicolas Boulanger-Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier
Breuleux, Pierre Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul F. Christiano, Tim Cooij-
mans, Marc-Alexandre Côté, Myriam Côté, Aaron C. Courville, Yann N. Dauphin, Olivier Delal-
leau, Julien Demouth, Guillaume Desjardins, Sander Dieleman, Laurent Dinh, Melanie Ducoffe,
Vincent Dumoulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu
Germain, Xavier Glorot, Ian J. Goodfellow, Matthew Graham, Çaglar Gülçehre, Philippe Hamel,
Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean,
Kai Jia, Mikhail Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Lau-
rent, Sean Lee, Simon Lefrançois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A.
Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier Mastropi-
etro, Robert McGibbon, Roland Memisevic, Bart van Merriënboer, Vincent Michalski, Mehdi
Mirza, Alberto Orlandi, Christopher Joseph Pal, Razvan Pascanu, Mohammad Pezeshki, Colin
Raffel, Daniel Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Peter Sadowski, John
Salvatier, François Savard, Jan Schlüter, John Schulman, Gabriel Schwartz, Iulian Vlad Serban,
Dmitriy Serdyuk, Samira Shabanian, Étienne Simon, Sigurd Spieckermann, S. Ramana Subra-
manyam, Jakub Sygnowski, Jérémie Tanguay, Gijs van Tulder, Joseph P. Turian, Sebastian Urban,
Pascal Vincent, Francesco Visin, Harm de Vries, David Warde-Farley, Dustin J. Webb, Matthew
Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, and Ying Zhang. Theano: A python
framework for fast computation of mathematical expressions. CoRR, abs/1605.02688, 2016. URL
http://arxiv.org/abs/1605.02688.

Prithviraj Ammanabrolu and Mark O. Riedl. Playing text-adventure games with graph-based deep
reinforcement learning. CoRR, abs/1812.01628, 2018.

Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Manning. Leveraging lin-
guistic structure for open domain information extraction. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers), pp. 344–354. Association for
Computational Linguistics, 2015. doi: 10.3115/v1/P15-1034. URL http://aclweb.org/
anthology/P15-1034.

8

http://arxiv.org/abs/1605.02688
http://aclweb.org/anthology/P15-1034
http://aclweb.org/anthology/P15-1034


Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

Michael Beetz, Moritz Tenorth, and Jan Winkler. Open-EASE – a knowledge processing service
for robots and robotics/AI researchers. In IEEE International Conference on Robotics and Au-
tomation (ICRA), Seattle, Washington, USA, 2015. Finalist for the Best Cognitive Robotics Paper
Award.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collab-
oratively created graph database for structuring human knowledge. In In SIGMOD Conference,
pp. 1247–1250, 2008.

Itai Caspi, Gal Leibovich, Gal Novik, and Shadi Endrawis. Reinforcement Learning Coach, Decem-
ber 2017. URL https://doi.org/10.5281/zenodo.1134899.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Info-
GAN: Interpretable representation learning by information maximizing generative adversarial
nets. arXiv:1606.03657, 2016.

Brian Cheung, Jesse A. Livezey, Arjun K. Bansal, and Bruno A. Olshausen. Discovering hidden
factors of variation in deep networks. arXiv:1412.6583, 2014.

John D. Co-Reyes, Abhishek Gupta, Suvansh Sanjeev, Nick Altieri, John DeNero, Pieter Abbeel,
and Sergey Levine. Guiding policies with language via meta-learning. arXiv:1811.07882, 2018.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generaliza-
tion in reinforcement learning. arXiv preprint arXiv:1812.02341, 2018.

Scott Cyphers, Arjun K. Bansal, Anahita Bhiwandiwalla, Jayaram Bobba, Matthew Brookhart, Avi-
jit Chakraborty, Will Constable, Christian Convey, Leona Cook, Omar Kanawi, Robert Kim-
ball, Jason Knight, Nikolay Korovaiko, Varun Kumar, Yixing Lao, Christopher R. Lishka,
Jaikrishnan Menon, Jennifer Myers, Sandeep Aswath Narayana, Adam Procter, and Tristan J.
Webb. Intel nGraph: An intermediate representation, compiler, and executor for deep learning.
arXiv:1801.08058, 2018.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. Montezuma’s
Revenge solved by Go-Explore, a new algorithm for hard-exploration problems (sets records on
Pitfall, too), 2018. URL https://eng.uber.com/go-explore/.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. CoRR, abs/1703.03400, 2017. URL http://arxiv.org/abs/1703.
03400.

Justin Fu, Anoop Korattikara, Sergey Levine, and Sergio Guadarrama. From language to goals:
Inverse reinforcement learning for vision-based instruction following. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
r1lq1hRqYQ.

Irina Higgins, Loı̈c Matthey, Xavier Glorot, Arka Pal, Benigno Uria, Charles Blundell, Shakir Mo-
hamed, and Alexander Lerchner. Early visual concept learning with unsupervised deep learning.
CoRR, abs/1606.05579, 2016. URL http://arxiv.org/abs/1606.05579.

Irina Higgins, Arka Pal, Andrei A. Rusu, Loı̈c Matthey, Christopher Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. DARLA: Improving zero-shot
transfer in reinforcement learning. In ICML, 2017.

Catalin Ionescu, Tejas Kulkarni, Aron van den Oord, Andriy Mnih, and Vlad Mnih. Learning
to control visual abstractions for structured exploration in deep reinforcement learning. Deep
Reinforcement Learning workshop, NeurIPS 2018, 2018.

Russell Kaplan, Christopher Sauer, and Alexander Sosa. Beating Atari with natural language guided
reinforcement learning. arXiv:1704.05539, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference for Learning Representations, 2015.

9

https://doi.org/10.5281/zenodo.1134899
https://eng.uber.com/go-explore/
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
https://openreview.net/forum?id=r1lq1hRqYQ
https://openreview.net/forum?id=r1lq1hRqYQ
http://arxiv.org/abs/1606.05579


Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. CoRR, abs/1312.6114,
2013.

Tejas D. Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Joshua B. Tenenbaum. Hierarchical
deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. CoRR,
abs/1604.06057, 2016. URL http://arxiv.org/abs/1604.06057.

Doug Lenat, Mayank Prakash, and Mary Shepherd. CYC: Using common sense knowledge to
overcome brittleness and knowledge acquistion bottlenecks. AI Mag., 6(4):65–85, January 1986.
ISSN 0738-4602. URL http://dl.acm.org/citation.cfm?id=13432.13435.

H. Liu and P. Singh. ConceptNet - a practical commonsense reasoning tool-kit. BT Technology
Journal, 22(4):211–226, October 2004. ISSN 1358-3948. doi: 10.1023/B:BTTJ.0000047600.
45421.6d. URL http://dx.doi.org/10.1023/B:BTTJ.0000047600.45421.6d.

Francesco Locatello, Stefan Bauer, Mario Lucic, Sylvain Gelly, Bernhard Schlkopf, and Olivier
Bachem. Challenging common assumptions in the unsupervised learning of disentangled repre-
sentations. arXiv:1811.12359, 2018.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei a Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, arXiv:1312.5602(7540):529–533, 2015.

Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman. Gotta learn fast: A
new benchmark for generalization in rl. arXiv:1804.03720, 2018.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krhenbhl, Vladlen Koltun, and Dawn Song. As-
sessing generalization in deep reinforcement learning. arXiv:1810.12282, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. 2017.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR,
abs/1606.04671, 2016. URL http://arxiv.org/abs/1606.04671.

Christopher De Sa, Albert Gu, Christopher R, and Frederic Sala. Representation tradeoffs for hy-
perbolic embeddings, 2018.

Ashutosh Saxena, Ashesh Jain, Ozan Sener, Aditya Jami, Dipendra K. Misra, and Hema S. Koppula.
RoboBrain: Large-scale knowledge engine for robots. arXiv:1412.0691, 2014.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neu-
ral networks on graphs. CoRR, abs/1704.02901, 2017. URL http://arxiv.org/abs/
1704.02901.

Thomas Stepleton. The pycolab game engine, 2017. URL https://github.com/deepmind/
pycolab.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core of semantic knowl-
edge. In Proceedings of the 16th International Conference on World Wide Web, WWW ’07, pp.
697–706, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-654-7. doi: 10.1145/1242572.
1242667. URL http://doi.acm.org/10.1145/1242572.1242667.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

10

http://arxiv.org/abs/1604.06057
http://dl.acm.org/citation.cfm?id=13432.13435
http://dx.doi.org/10.1023/B:BTTJ.0000047600.45421.6d
http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1704.02901
http://arxiv.org/abs/1704.02901
https://github.com/deepmind/pycolab
https://github.com/deepmind/pycolab
http://doi.acm.org/10.1145/1242572.1242667
https://openreview.net/forum?id=rJXMpikCZ


Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. NerveNet: Learning structured policy with
graph neural networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=S1sqHMZCb.

Wolfram. Mathematica. Champaign, IL, 2018.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin,
Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria
Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, and Peter Battaglia. Deep re-
inforcement learning with relational inductive biases. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=HkxaFoC9KQ.

11

https://openreview.net/forum?id=S1sqHMZCb
https://openreview.net/forum?id=HkxaFoC9KQ

	Related Work
	Graph Based Reinforcement Learning
	Natural language guided RL
	Metalearning

	Graph-DQN
	Details of Model components
	Broadcast
	Pooling
	KG-Conv

	Model Architecture

	Supplemental information on Experiments
	Baseline DQN
	Hyperparameters

	Supplemental Results
	Knowledge graph types
	What does the Warehouse agent learn?

	Discussion
	 Future Directions
	Scenes
	Interpretability
	Knowledge graph
	Environments


