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1 RELATED WORK

1.1 GRAPH BASED REINFORCEMENT LEARNING

Previous work has applied graph-based architectures to control problems (Wang et al., 2018) and
text-based games (Ammanabrolu & Riedl, 2018). In each case, the design of the architecture is
guided by the problem structure. In NerveNet (Wang et al., 2018), the state and action spaces can be
decomposed according to the anatomy of the agent; the Graph Neural Network in that study therefore
also represents the anatomy. The KG-DQN agent (Ammanabrolu & Riedl, 2018) is targeted at
games in which building a description of the relations of the world from text based interaction is a
challenge. In contrast, we used the knowledge graph to inject semantic priors into the Graph-DQN,
and trained agents to operate on visual input and achieve much larger relative gains in performance.

Whereas KG-DQN combines the knowledge graph and the state with feature concatenation in the
final layer, here we use broadcast and joint convolution operations to exchange information between
the entities in the graph and instances of that entity in the game state. We repeat this module in a deep
network to form the encoder. By pooling state features into the graph and performing convolution,
our model implements a global operation similar to the self-attention layer used in the Relational RL
architecture (Zambaldi et al., 2019). However, that model tackles the problem of learning relational
knowledge during training, without any a priori knowledge. Graph-DQN is designed to exploit
external knowledge to generalize to new objects at test time.

1.2 NATURAL LANGUAGE GUIDED RL

Previous work has used natural language instruction to train agents (Ammanabrolu & Riedl, 2018;
Co-Reyes et al., 2018; Fu et al., 2019; Kaplan et al., 2017). Our approach is complementary to
these as the information extraction algorithms in the literature (for e.g. (Angeli et al., 2015)) could
be used to structure natural language corpora, rules or instructions as knowledge graphs, which can
be provided to Graph-DQN. We believe that graphs could more generally serve as an efficient and
interpretable representational mechanism for prior knowledge or instruction.

Several studies have attempted to extract objects from visual input using unsupervised or semi-
supervised methods (Chen et al., 2016; Cheung et al., 2014; Higgins et al., 2016; 2017; Ionescu
et al., 2018; Kingma & Welling, 2013; Locatello et al., 2018). As the focus of our study is the
combination of scene graphs and knowledge graphs, and not the extraction of symbols themselves,
we assume that our network has object level ground truth information available from the scene. For
this reason we use environments that can be programatically generated.

1.3 METALEARNING

Several prior studies study generalization to novel tasks. Techniques such as MAML (Finn et al.,
2017) train on a set of environments or tasks and attempt to learn a weight manifold on which a new
task can be learned with minimal additional examples. Here we structure the relevant information
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Figure 1: Layer types in our Graph-DQN architecture, including methods to Broadcast from the
knowledge graph K to the state presentation S, Pooling from S → K, and updating the state by
jointly convolving over (S,K).

for solving the task in the form of a knowledge graph to avoid needing additional training. In
environments where such prior knowledge may be unavailable, the Graph-DQN could be augmented
with metalearning or curriculum learning. Other techniques such as DARLA (Higgins et al., 2017)
and progressive nets (Rusu et al., 2016) have studied generalization in the context of domain shifts
(e.g. from simulation to reality) but not in the context of generalization to new objects studied here.

2 GRAPH-DQN

2.1 DETAILS OF MODEL COMPONENTS

Figure 1 shows graphical depictions of the three contributed methods (Broadcast, Pooling, and
KG-Conv for transferring information between the knowledge graph and the scene representation.

2.1.1 BROADCAST

We define the function Broadcast : K → S. For each entity i in the knowledge graph, we copy
its graph representation vi to each occurrence of i in the game map. This is used to initialize the
state representation S such that we are using a common embedding to refer to entities in both K and
S. Each location (i, j) in the state is computed as

Si,j =
∑
v∈V

δv(i, j)v (1)

where δv(i, j) = 1 if the entity corresponding to v is present at location (i, j) and zero otherwise.
Thus, symbols in the game map not present in the knowledge graph are initialized with a zero vector.

2.1.2 POOLING

The reverse of Broadcast, this operation is used to update the entity representations in the knowl-
edge graph. In Pooling : S → K, we update the graph’s representation v by averaging the features
in S over all instances of entity corresponding to v in the state:

vi =
1

Nv

∑
(i,j)∈S

Wδv(i, j)Sij (2)

where Nv =
∑
S δv(i, j) is the number of instances of v in the state. Since S and V may have

different number of features, we used the weight matrix W to project from the state vectors to the
dimensionality of the vertex features in the graph.
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2.1.3 KG-CONV

To update the state representation S, we augment a regular convolution layer with the knowledge
graph. In addition to applying convolutional filters to the neighborhood of a location, we also add
the node representation vi of the entity i at that location, passed through linear layer to vi to match
the number of filters in the convolution. Formally, we can describe this operation as:

Conv3×3×d(S) + Conv1×1×d(Broadcast(K)) (3)

This provides a skip connection allowing deeper layers in the network to more easily make use of
the global representations.

2.2 MODEL ARCHITECTURE

The model architecture is shown in Figure 2. First, we apply two layers of edge-conditioned graph
convolution (ECC) (Simonovsky & Komodakis, 2017) toK to enrich the node features with informa-
tion from the neighborhood of each node. Those features are then encoded in the state representation
S through a Broadcast layer. The network then consists of N repeated blocks. In each block, we
first update the knowledge graph with Pooling from the state, followed by graph convolutions.
Then, we update the state representation with a KG-Conv layer, which incorporates the updated
knowledge graph. Finally, we use a few linear layers to compute the Q-values for each action.
While this model is designed to scale to deeper blocks, in our experiments we only use N = 1
blocks.

3 SUPPLEMENTAL INFORMATION ON EXPERIMENTS

3.1 BASELINE DQN

We used DQN (Mnih et al., 2015) as the baseline RL algorithm. To keep the comparison fair, the
DQN also received symbolic input. In the Warehouse experiments, we used a convolutional network
consisting of Conv(3 × 3, 64) → Conv(3 × 3, 64) → Dense(64) → Dense(4). This model is
equivalent to the Graph-DQN architecture with the connections from the knowledge graph removed.
We performed an architecture search and did not find a model that outperformed it.

The best agent in Pacman had a deeper and wider convolutional network with four Conv(3 × 3)
layers with (64, 128, 128, 64) filters, followed by a multilayer perception of Dense(100) →
Dense(50)→ Dense(4).

In both models, after the convolutional layers, we computed a per-channel mean over the 2D map
and passed the resulting vector into the multilayer perceptron (MLP).

We validated our implementation of the algorithm by comparing our performance on the Cartpole
and Pong environments with those in Coach (Caspi et al., 2017) and Ptan (Lap). Software was
implemented in Pytorch (Paszke et al., 2017). OpenAI Gym (Bro) and pycolab (Stepleton, 2017)
were used to implement the environments.

3.2 HYPERPARAMETERS

We ran our experiments using the Adam optimizer with learning rate of 0.0001 in the Warehouse en-
vironments and 0.00025 in Pacman (Kingma & Ba, 2015). We used a replay buffer size of 100,000
throughout; at every step, we sampled 32 transitions from the buffer and trained the agent by min-
imizing the L2 loss. In the Warehouse environments, we allowed the agent to run for 10,000 steps
before commencing training.
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Figure 2: Graph-DQN architecture. The knowledge graph is first operated on by graph convo-
lution layers (GraphConv-ECC) to enrich the node features to d = 64 dimensions (Simonovsky
& Komodakis, 2017). We then use Broadcast to create a compatible scene representation
S ∈ R10×10×d, indicated here by the cube. We then apply N blocks (blue dotted rectangle). In
each block, we first update the knowledge graph K via Pooling and Graph Convolution. Then,
we update S using a joint convolution over S and K. Finally, a small MLP computes the Q-values
for the actions.
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4 SUPPLEMENTAL RESULTS

4.1 KNOWLEDGE GRAPH TYPES

In order to determine whether the results in Figure 1 (in extended abstract) are sensitive to the
choice of the knowledge graph architecture, we trained the Graph-DQN model with variants of the
base knowledge graph, as shown in Figure 3:

1. Base: Knowledge graph was cropped to entities that were present in the scene and the edges
between them

2. Same edges: Knowledge graph had same edge labels for all edges. No distinct relationships
were encoded, but connectivity was same as the base knowledge graph

3. No edges: All edges were removed.

4. Fully connected: Nodes in the knowledge graph were fully connected, with the same edge
label for all edges.

5. Fully connected (distinct): Nodes in the knowledge graph were fully connected, with dis-
tinct edge labels for each edge.

6. Complete: Complete knowledge graph is provided for both training and testing. No crop-
ping to entities only present in the scene was performed.

When we removed the edge distinctiveness (‘Same Edges’), the model still trained, but failed to
generalize to novel objects. If we removed edges entirely (‘No Edges’), the performance is the same
as the baseline DQN. These results show that encoding the game structure into the knowledge graph
is important for generalizing to the test environment but not necessary for the training environments.

Surprisingly, when the knowledge graph is fully connected (‘FC’ and ‘FC-distinct’), the model does
not train, suggesting that the prior structure cannot be learned by Graph-DQN. If the complete graph
is available during training, including nodes for objects that only appear in the test environments, the
model generalizes to near-optimal performance (see orange lines in ‘Complete’). In this condition,
even though the object ‘c’ is not in the training environment, gradients still flow through the A→ c
edge. To avoid any contamination during training into the knowledge graph of information about
ball-bucket object pairs seen during test, for the base condition we crop the knowledge graph only
to entities (and corresponding edges) seen in the training environments.

4.2 WHAT DOES THE WAREHOUSE AGENT LEARN?

In addition to Pacman, we also ran experiments with Warehouse where we took an agent trained on
the knowledge graph, and observed its behavior when the input knowledge graph was altered (Figure
4). We were able to manipulate the agent behavior, and confirm that the learned edge semantics
match the game structure and can be applied to novel objects. Just by changing the knowledge
graph at test time, the agent can be manipulated to push buckets into balls, or push balls into other
balls.

5 DISCUSSION

Here we show that using knowledge graphs to provide DQNs information about entities and their
inter-relationships provides a way to facilitate faster learning. In addition, this provides a framework
for faster generalization to new entities with similar relationships. We tested this generalization with
sampling from various numbers of object pairs in train and test environments. We compared the
Graph-DQN method to baselines with Conv-DQN or Graph-DQN without edges in the knowledge
graph. Graph-DQN significantly outperformed the baseline, and was able to generalize to novel
objects.

Our approach is complementary to other approaches in RL that strive to improve sample efficiency
and generalization such as hierarchical RL (Kulkarni et al., 2016), metalearning (Finn et al., 2017),
or better exploration policies (Ecoffet et al., 2018) and can be combined as such with these ap-
proaches to build better overall systems.
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Figure 3: Model performance when trained on various knowledge graph types, in the one-one, two-
one, and five-two environments in our most challenging Warehouse environment (buckets-repeat).
Tested types are described in the paper. Train performance in blue, and test performance in orange.
Shaded errors indicate the standard error over n = 10 repetitions. Results in other environments are
similar, but omitted for space reasons. See Supplement for additional environments.

For future work, ablation studies on Graph-DQN can help determine when and how the scene and
knowledge graphs should exchange information. Attempts to learn the knowledge graph during
training were not successful (see ’fully connected’ in Figure 3), and we speculate that graph attention
models (Velickovic et al., 2018) could help prune the graph to only the useful relations. We used
simple one-hot edge features throughout, whereas one could use word embeddings (Mikolov et al.,
2013; Sa et al., 2018) to seed the knowledge graph with semantic information. We could also test
on previously published environments such as BoxWorld (Zambaldi et al., 2019), if code becomes
available, as well as environments where multiple properties of entities need to be combined.

6 FUTURE DIRECTIONS

6.1 SCENES

The use of scene graphs could provide a framework to handle partial observability by building out
portions of the environment as they are explored and storing them in the scene graph. As models
that can extract objects from frames improve (Chen et al., 2016; Cheung et al., 2014; Higgins et al.,
2016; Ionescu et al., 2018; Kingma & Welling, 2013; Locatello et al., 2018), connecting the outputs
of these models as inputs to the models developed here could provide a mechanism to go directly
from pixels to actions.

6.2 INTERPRETABILITY

The knowledge graph provides an interpretable way to instruct the Deep RL system the rules of
the game. While not explored here these rules could include the model of the environment facili-
tating use of Graph-DQN in model-based RL. Future work could explore whether the structure of
the knowledge graph combined with the interpretability of the nodes and edges could serve as a
mechanism to overcome catastrophic forgetting. For example, new entities and relationships could
be incrementally added to the knowledge graph encoded in a way that is compatible with existing
relationships and with potentially minimal disruption to existing entities and their relationships. A
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Figure 4: Manipulating agent behavior. We use an already trained agent, and manipulated its be-
havior at test time by modifying the input knowledge graph. For each manipulation, we show the
resulting knowledge graph, the game state, and the resulting agent behavior. These studies show that
the agent learned the semantic meaning of edges (’push’, ’target’) that we intended, and are able to
apply those learned relations to different objects. For example, the trained agent can be manipulated
to push buckets into balls, or balls into other balls without any additional training.

limitation is that even though the knowledge graph itself is interpretable, once the messages from
the knowledge graph are combined with messages in the scene graph we sacrifice interpretability in
favor of the learning power of gradient based Deep Learning.

6.3 KNOWLEDGE GRAPH

While we are hand coding the knowledge graph in this study, future work could learn the knowl-
edge graph directly from a set of environments, or via information extraction approaches on text
corpora, or learn graph attention models over existing large knowledge graphs (Angeli et al.,
2015; Beetz et al., 2015; Bollacker et al., 2008; Lenat et al., 1986; Liu & Singh, 2004; Saxena
et al., 2014; Suchanek et al., 2007). Knowledge graphs could also be generalized beyond the
〈subject, relation, object〉 triplet structure to incorporate prior or instructional information in the
form of computational graphs (Abadi et al., 2016; Al-Rfou et al., 2016; Cyphers et al., 2018; Wol-
fram).

7



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

6.4 ENVIRONMENTS

While we limited our analysis here to relatively small environments to test the fundamental aspects
of our approach, scaling to larger environments is another obvious direction. Environments such as
OpenAI Retro (Nichol et al., 2018) or CoinRun (Cobbe et al., 2018) have helped spark an interest
in the problem of generalization in Deep RL. However, the lack of readily available ground truth
and inability to programatically generate levels hinders a rigorous development of algorithmic ap-
proaches to solve this problem using Retro. We believe that further development of benchmarks for
generalization in Deep RL (Packer et al., 2018) that enable programmatic game creation and make
ground truth accessible will help the field.
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