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1 PROOFS

We here present proofs of each introduced result and Table 1 summarizing notation.

Theorem 1. Fvery deterministic policy defined over abstract states and ¢-relative options,
7,0, + Sp — O, induces a unique Markov policy in the ground MDP, ’/T(l; 0," S— A We

denote Hg,o(b as the set of policies in the original MDP representable by the pair (¢, Oy) via
this mapping.

Proof. Consider an arbitrary deterministic policy my o,. By definition, this policy assigns
one option to each abstract state. Let O, denote the set of options this policy assigns.

By construction of ¢-relative options, for every ground state s € S there is one unique
option o4(5) € O that can be executed in s.

Therefore, we construct a policy wfg 0, as the combination of option policies in O,. Specif-
ically, letting m,,, denote the option policy of the option in O that is assigned to ¢(s):

Wg,m(s) = Toy (8) (16)

This construction is visualized in Figure 2. O

02 o To,(8) s € %
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(a) Assignment of options to abstract (b) Construction of wi o,
states via g0, e

Figure 2: The process of inducing a grounded policy 77&70(15 from 7y 0,-

Theorem 2. (Main Result) For any ¢ such that L(¢) < €4, the two introduced classes of
¢-relative options satisfy:

€ er + |Sler VMAX
L(¢7 Otﬁ,Q;) < 9 ) L(¢7O¢'7M5) < L | | L .
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10) A state abstraction function.
Oy A set of ¢-relative options.
7,0, A policy that maps each abstract state to an option.

ﬂi,o(b A policy over § and A, induced by 74 0,

H, A hierarchy of depth n, denoting (¢(™, (’)gl)).

™ A list of n state abstractions, where ¢; : Spi—1 — Sg ;-

oy The i-th state abstraction in a list ¢,

@ The result of applying the first i state abstractions to s, ¢;(...¢1(s)).

Ss.i The i-th abstract state space.

v The value function of level 7 policy 7 defined according to R;, T;, Og i, S4,i-

Op.i The options available at level ¢, with each option component defined over states in Sy ;1.

R; The reward function of level .

T; The reward function of level 7.

™ The policy over level ¢ of the hierarchy

7TZ-¢ A policy over Sy ;—1 and Og ;—1, induced by ;.
7T,? A policy over § and A, induced by ;.

Table 1: Notation

We prove this claim using two separate proofs, the first targets the Oy g« class of options,
and the second, Oy ar. .

Proof. (L(¢,0pq:) < %)

- 1=

U
Consider L(¢,0g,qx) = minﬂi o emt , WaXses |[V*(s) — V" "#9(s)|. Since V*(s) > V7(s)
1055 T0.0

for all 7w, we henceforth drop the absolute value for convenience.

To proceed, we first define o} , to be the ¢-relative option that executes 7* in every state
and terminates when it leaves the abstract state sg:

05, = Vses (Lo (s) = ¢(s) = sy, (18)
B(s) = ¢(s) # s4, (19)
m(s) =7"(s)). (20)

Note that since o, always chooses actions according to 7, that @ (s, 0;,) = V*(s) (where
@3, is defined according to Equation 6).

Then, by the @QF predicate, we can construct a policy over abstract states and options
ko0, € Iy o, with the following property:

v5¢63¢,865¢ : Q:¢(S’ O;,) - Q:d, (87 He,04 (S¢>) < €Q- (21)
Note that pg 0, (s¢) outputs an option. As in Equation 21, we henceforth denote sg = ¢(s)
and correspondingly sj = ¢(s').
Then it must be the case that
4
L(6,00.;) < maxV*(s) — V"% (5) (22)
€ Se

Let Qf (s, 0) denote the expected discounted reward of executing option o, then executing ¢
options under pg 0, , then following the optimal policy thereafter. Note that

4
lim Q7 (s, 16,0, (59)) = V"* 9 (s), (23)



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement
Learning” at ICLR 2019

because Qf (s, 1,0, (5¢)) is the expected discounted reward of executing ¢ + 1 options under
He,0,, then following the optimal policy thereafter.

We next show by induction on ¢ that

b €
* _ 1y He0 _ . * _O* < Q
max V*(s) = V"*%(s) = Igleagitllm V*(s) — Qi (5, thg,0,(5¢)) < T (24)

In particular, we wish to show that

t

View s max V*(s) = Q; (s, 1,0, (54)) < D_eqn’" (25)

=0

(Base Case)
When ¢t =0, for all s € S,

Q8(87M¢’0¢ (S¢)) = Q:¢ (S’M¢>,@¢ (Stﬁ))’ (26)

because both quantities represent the expected discounted reward of executing the option
te,0,(5¢) then following the optimal policy thereafter. It follows that

max V() = Q4(s, 10,0, (s0)) = max V*(s) = Q1 (s 10,0, (50)). (27)
= max Q, (5. 05,) = Q2 (5, 16,0, (54)); (28)
<eq. (29)
0
=Y e, (30)
1=0

where the inequality holds by definition of ug 0,

(Inductive Case)
We assume as the inductive hypothesis that

k
max V*(s) — Qi (s, 16,0, (5)) < Y_£@7", (31)
) i=0
and want to show that
k+1 ‘
a1 (5) = Qi (5 16,0, (59)) € D (32)
i=0
To begin, fix s € S and consider
V*(s) = Qg1 (5, 1,0, (56)) (33)
= V*(S) - <R0(87 He,04 (S¢)) + Z TO(S/|57M¢"O¢ (5¢))QZ(S/a He,04 (‘%ﬁ))) (34)
s'eS
= V*(5) = Ro(5, 115,0, (56)) = Y Tol8'[5, 16,0, (56)) Q1 (5, 1.0, (5}5)) (35)
s'eS

where R, and T, indicate the reward and multi-time option models from Sutton et al. (1999).
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Now, subtract and add .5 To(s']s, g0, (54))V*(s'):
= VH(8) = Rol(,116,0,(56) = D Tols'Is. 116.0, (50))V*(s') (36)
s'eS
+ Z T |8 He,0, 8(25 Z T |57/'6¢'7O¢ (5¢))QZ(SI7N¢,O¢ (S;ﬁ)) (37)
s'es s'eS
= Vi(s) = Q5, (s, 19,0,(54)) (38)
+ Y Tols|s, 19,0, (56)) [V (s) = Qi(s', 16,0, (5})] (39)
s'eS
= Qs (8, Os¢) Q:¢ (s He,04 (S¢)) (40)
+ Z TO 5 |Sa He,04 (S¢)) [V*(S,) - QZ(S/7M¢>’O¢ (dﬁ)} (41)
s'eS
< et Y T8, 116.0,(56) [VI(5') = Qils's o0, (s)] (42)
s'eS

by definition of p4 0,. Continuing, we have that:

= ot Y D P nls ps,0,(s0)0" [VI(S) = Qils' 1,0, ()] (43)
s'eSn=1

< EQJFZZPS nls; pig,0,(59)) ZEQ% (44)
s’eSn=1

(45)

by the inductive hypothesis. Then:

= 5Q+’yZZIP’s n+1ls, pg0,(54)) ZEQ’Y (46)
s'eSn=0
= EQ—F’)/ZEQ’)/ ZZPS n+1s, pg.0,(54))7" (47)
s’eSn=0
k .
R S ()
i=0
k+1 _
= ZEQ’W7 (49)
i=0

since P(s',n + 1[s, 11,0, (54)) is a probability distribution and = is less than 1.

All together, we’ve shown that V*(s) — Q5 (s, g0, (5¢)) < Efiol eqgn! for all s € S, which
implies that

k+1

max V*(s) = Qi1 (5, 110,0, (50)) < D@7, (50)
i=0
as desired.
It follows by induction that
t .
Vien : max V*(s) — Qi (s, 16,0, (54)) < EO eQ" (51)
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Therefore,
L(6,05,:) < maxV*(s) = V"% ) (52
= max lim V7(s) — Q; (s, g0, (s0)) (53)
< Jlim Z e’ (54)
=1 (55)

which completes the proof.

Proof. (L6, Oy ar,) < 2SR

Fix s € S. Let s4 = ¢(s). Consider any ¢-relative option oy that initiates in s4. Then by
the M. predicate, there exists an option 0y € O, such that

T3 5,01 SDQHOO<€T AND||R501*RS,O2H00§5R~ (56)

Now, we consider the difference in optimal Q-values between 01 and oy. We first have that:

Qi (5,01) = Rls,moy (5) +7 D T( | 5.70,(5)) (L' € 55) @, (5 01) + 15" & 55)V* ()

s'eS
o(5,01) +ZT (8']s,01)V*(s").
s'eS
(57)
By symmetry,
@5, (8,02) = Ro(s,02) + Z To(s'|s,02)V*(s"). (58)
s'eS
Therefore,
Q% (s,01) — Q3 (5,09)| = |Ro(s,01) = Ro(s,05) + Y To(s'|s,01)V*(s') —
s’eS
Z To(s'|s,02)V*(s")]
s'eS
< [Ro(5,01) = Ro(5,09)| + | D (To(s'|s,01) = To(s'|s, 02)) V*(5)]
s'eS
< [Ro(5,01) = Ro(5,09)[ + Y |To(s'|s,01) = To(s'|s, 02)||V*(5")]
s’eS
<erp+ |S|ETVMAX,
(59)

by the model similarity assumption. We have now shown that options with similar models
have similar Q-values with eg = eg + |S|er VMAX. Therefore, by the previous result,

er + |SlerVMAX

<
L(¢7O¢,ME) > 1 —

(60)

O
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Lemma 1. FEvery deterministic policy m; defined according to the i-th level of a hierarchy,

H,,, induces a unique policy in the ground MDP, which we denote 7Tzl}.

Proof. The result follows from an identical strategy to the proof of Theorem 1. O

Theorem 3. Consider two algorithms:

1. Ay: given an MDP M, outputs a ¢.
2. Ap,: given M and a ¢, outputs a set of options O such that L(¢,0) < eo.

Then, under Assumptions 1 and 2, by repeated application of Ay and Ao, , we can construct
a hierarchy of depth n such that

L(H,) =n(k+¢), (61)
where £ is some upper bound on €4 +co (and is the same value that appears in Assumption

2).

Proof. We present the proof of the bound for a two level hierarchy, but the same strategy
generalizes to n levels via induction.

Let ¢ be the known upper bound for L(¢, ). Then:

1

By Theorem 2: min |[Vg" = Vg loo <4

m €Il
(62)
.

By Assumption 1: Ve Vo =V leo <&

(63)
P . . 7o ¥
Letting 7§ = argmin ||V — V'* ||, by Assumption 2: min ||V =V # | </
T €Il Y el
1 1 2 2
(64)
. 7\'L 7\'“

By Assumption 1 Vitent Vi? = Vo lls <K

(65)
Therefore, by the triangle inequality:
4
min [|Vg — Vg2 [|eo < 26 + 20. (66)
mo €Il

O
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