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1 FINDING OPTIONS THAT MINIMIZE PLANNING TIME

Theorem 1.

1. MOMI is Ω(log n) hard to approximate even for deterministic MDPs unless P = NP.

2. MOMI is 2log1−ε n-hard to approximate for any ε > 0 even for deterministic MDP unless
NP ⊆ DTIME(npoly logn).

Proof. First, we show Theorem 4.1 by a reduction from the set cover problem to MOMI with deter-
ministic MDP. We consider two computational problems:

1. MINOPTIONMAXITER (MOMI): Which set of options let value iteration converge in at
most ` iterations?

2. MINITERMAXOPTION (MIMO): Which set of k or fewer options minimizes the number
of iterations to convergence?

More formally, MOMI is defined as follows.

Definition 1 MOMI: The MINOPTIONMAXITER problem:
Given an MDP M , a non-negative real-value ε, and an integer `, returnO that minimizes |O|
subject to O ⊆ Op and L(O) ≤ `.

We consider a problem OI-DEC which is a decision version of MOMI and MIMO. The problem
asks if we can solve the MDP within ` iterations using at most k point options.

Definition 2 OI-DEC:
Given an MDP M , a non-negative real-value ε, and integers k and `, return ‘Yes’ if the there
exists an option set O such that O ⊆ Op, |O| ≤ k and L(O) ≤ `. ‘No’ otherwise.

We prove the theorem by reduction from the decision version of the set-cover problem—known to
be NP-complete—to OI-DEC. The set-cover problem is defined as follows.

Definition 3 SetCover-DEC:
Given a set of elements U , a set of subsets X = {X ⊆ U}, and an integer k, return ‘Yes’ if
there exists a cover C ⊆ X that

⋃
X∈C X = U and |C| ≤ k. ‘No’ otherwise.

1



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

u1 u2 u3 u4 u5

X1 X2

X ′1 X ′2

g

Figure 1: Reduction from SetCover-DEC to OI-DEC. The example shows the reduction from an
instance of SetCover-DEC which asks if we can pick two subsets from X = {X1, X2} where
X1 = {1, 2, 3}, X2 = {3, 4, 5} to cover all elements U = {1, 2, 3, 4, 5}. The SetCover-DEC can
be reduced to an instance of OI-DEC where the question is whether the MDP can be solved with 2
iterations of VI by adding at most two point options. The answer of OI-DEC is ‘Yes’ (adding point
options fromX1 andX2 to g will solve the problem), thus the answer of the SetCover-DEC is ‘Yes’.
Here the set of initial states corresponds to the cover for the SetCover-DEC.

If there is some u ∈ U that is not included in at least one of the subsets X , then the answer is ‘No’.
Assuming otherwise, we construct an instance of a shortest path problem (a special case of an MDP
problem) as follows (Figure 1). There are four types of states in the MDP: (1) ui ∈ U represents one
of the elements in U , (2) Xi ∈ X represents one of the subsets in X , (3) X ′i ∈ X ′: we make a copy
for every state Xi ∈ X and call them X ′i , (4) a goal state g. Thus, the state set is U ∪X ∪X ′ ∪ {g}.
We build edges between states as follows: (1) e(u,X) ∈ E iff u ∈ X: For u ∈ U and X ∈ X , there
is an edge between u and X . (2) ∀Xi ∈ X , e(Xi, X

′
i) ∈ E: For every Xi ∈ X , we have a edge

from Xi to X ′i . (3) ∀e(X ′, g) ∈ E: for every X ′ ∈ X ′i we have a edge from Xi to the goal g. This
construction can be done in polynomial time.

Let M be the MDP constructed in this way. We show that SetCover(U ,X , k) = OI-DEC(M,k, 2).
Note that by construction every state si, s′i, and g converges to its optimal value within 2 iterations
as it reaches the goal state g within 2 steps. A state u ∈ U converges within 2 steps if and only if
there exists a point option (a) from X to g where u ∈ X , (b) from u to X ′ where u ∈ X , or (c)
from u to g. For options of type (b) and (c), we can find an option of type (a) that makes u converge
within 2 steps by setting the initial state of the option to Io = X , where u ∈ X , and the termination
state to βo = g. Let O be the solution of OI-DEC(M,k, 2). If there exists an option of type (b)
or (c), we can swap them with an option of type (a) and still maintain a solution. Let C be a set of
initial states of each option in O (C = {Io|o ∈ O}). This construction exactly matches the solution
of the SetCover-DEC.

For Theorems 4.2 and 4.3 we reduce our problem to the Min-Rep, problem, originally defined by
Kortsarz (2001). Min-Rep is a variant of the better studied label cover problem ? and has been
integral to recent hardness of approximation results in network design problems ??. Roughly, Min-
Rep asks how to assign as few labels as possible to nodes in a bipartite graph such that every edge
is “satisfied.”

Definition 4 Min-Rep:
Given a bipartite graph G = (A∪B,E) and alphabets ΣA and ΣB for the left and right sides
of G respectively. Each e ∈ E has associated with it a set of pairs πe ⊆ ΣA × ΣB which
satisfy it. Return a pair of assignments γA : A → P(ΣA) and γB : B → P(ΣB) such that
for every e = (Ai, Bj) ∈ E there exists an (a, b) ∈ πe such that a ∈ γA(Ai) and b ∈ γB(Bj).
The objective is to minimize

∑
Ai∈A |γA(Ai)|+

∑
Bj∈B |γB(Bj)|.

We illustrate a feasible solution to an instance of Min-Rep in Figure 2.

The crucial property of Min-Rep we use is that no polynomial-time algorithm can approximate
Min-Rep well. Let ñ = |A|+ |B|.
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Figure 2: An instance of Min-Rep with ΣA = {a1, a2, a3} and ΣB = {b1, b2, b3}. Edge e is labeled
with pairs in πe. Feasible solution (γA, γb) illustrated where γA(Ai) and γB(Bj) below Ai and Bj
in blue. Constraints colored to coincide with stochastic action colors in Figure 3.

Lemma 1 (Kortsarz 2001). Unless NP ⊆ DTIME(npoly logn), Min-Rep admits no 2log1−ε ñ

polynomial-time approximation algorithm for any ε > 0.

As a technical note, we emphasize that all relevant quantities in Min-Rep are polynomially-bounded.
In Min-Rep we have |ΣA|, |ΣB | ≤ ñc

′
for constant c′. It immediately follows that

∑
e |πe| ≤ nc for

constant c.

1.1 HARDNESS OF APPROXIMATION OF MOMI WITH DETERMINISTIC MDP

Theorem 4.1 Proof. The optimization version of the set-cover problem cannot be approximated
within a factor of c·lnn by a polynomial-time algorithm unless P = NP ?. The set-cover optimization
problem can be reduced to MOMI with a similar construction for a reduction from SetCover-DEC to
OI-DEC. Here, the targeted minimization values of the two problems are equal: P (C) = |O|, and the
number of states in OI-DEC is equal to the number of elements in the set cover on transformation.
Assume there is a polynomial-time algorithm within a factor of c · lnn approximation for MOMI
where n is the number of states in the MDP. Let SetCover(U ,X ) be an instance of the set-cover
problem. We can convert the instance into an instance of MOMI(M, 0, 2). Using the approximation
algorithm, we get a solution O where |O| ≤ c lnn|O∗|, where O∗ is the optimal solution. We con-
struct a solution for the set cover C from the solution to the MOMI O (see the construction in the
proof of Theorem 1). Because |C| = |O| and |C∗| = |O∗|, where C∗ is the optimal solution for the
set cover, we get |C| = |O| ≤ c lnn|O∗| = c lnn|C∗|. Thus, we acquire a c · lnn approximation
solution for the set-cover problem within polynomial time, something only possible if P=NP. Thus,
there is no polynomial-time algorithm with a factor of c · lnn approximation for MOMI, unless
P=NP.

1.2 HARDNESS OF APPROXIMATION OF MOMI

We now show our hardness of approximation of 2log1−ε n for MOMI, Theorem 4.2.1

We start by describing our reduction from an instance of Min-Rep to an instance of MOMI. The
intuition behind our reduction is that we can encode choosing a label for a vertex in Min-Rep as
choosing an option in our MOMI instance. In particular, we will have a state for each edge in our
Min-Rep instance and reward will propagate quickly to that state when value iteration is run only if
the options corresponding to a satisfying assignment for that edge are chosen.

More formally, our reduction is as follows. Consider an instance of Min-Rep, MR, given by G =
(A ∪B,E), ΣA, ΣB and {πe}. Our instance of MOMI is as follows where γ = 1 and l = 3.2

• State space We have a single goal state Sg along with states S′g and S′′g . For each edge e
we create a state Se. Let SatA(e) consist of all a ∈ ΣA such that a is in some assignment

1We assume that O′ is a “good” set of options in the sense that there exists some set O∗ ⊆ O′ such that
L(O∗) ≤ `. We also assume, without loss of generality, that ε < 1 throughout this section; other values of ε
can be handled by re-scaling rewards in our reduction.

2It is easy to generalize these results to l ≥ 4 by replacing certain edges with paths.
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Figure 3: Our MOMI reduction applied to the Min-Rep problem in Figure 2. e1 = (A1, B1),
e2 = (A1, B2), e3 = (A2, B2). Actions given in solid lines and each option in O′ represented in
its own color as a dashed line from initiation to termination states. Notice that a single option goes
from Se3b1 and Se2b1 to Sg .

in πe. Define SatB(e) symmetrically. For each edge e ∈ E we create a set of 2 · |SatA(e)|
states, namely Sea and S′ea for every a ∈ SatA(e). We do the same for b ∈ SatB(e).

• Actions and Transitions We have a single action from S′g to Sg , a single action from S′′g
to S′g . For each edge e we have the following deterministic actions: Every S′ea has a single
outgoing action to Sea for a ∈ SatA(e); Every Seb has a single outgoing action to Seb′ for
b ∈ SatB(e); Every Sea has an outgoing action to Seb if (a, b) ∈ πe and every S′eb has
a single outgoing action to Sg; Lastly, we have a single action from S′ea to S′′g for every
a ∈ SatA(e).

• Reward The reward of arriving in Sg is 1. The reward of arriving in every other state is 0.

• Option Set Our option set O′ is as follows. For each vertex Ai ∈ A and each a ∈ ΣA we
have an option O(Ai, a): The initiation set of this option is every Se where e is incident to
Ai; The termination set of this option is every Sea where Ai is incident to e; The policy
of this option takes the action from S′ea to Sea when in S′ea and the action from Se to S′ea
when in Se.
Symmetrically, for every vertex Bj ∈ B and each b ∈ ΣB we have an option O(Bj , b):
The initiation set of this option is every Seb where e is incident to Bj ; The termination set
of this option is Sg; The policy of this option takes the action from Seb to S′eb when in Seb
and from S′eb to Sg when in S′eb.

One should think of choosing option O(v, x) as corresponding to choosing label x for vertex v in
the input Min-Rep instance. Let MOMI(MR) be the MDP output given instance MR of Min-Rep
and see Figure 3 for an illustration of our reduction.

Let OPTMOMI be the value of the optimal solution to MOMI(MR) and let OPTMR be the value
of the optimal Min-Rep solution to MR. The following lemmas demonstrates the correspondence
between a MOMI and Min-Rep solution.

Lemma 2. OPTMOMI ≤ OPTMR

Proof. Given a solution (γA, γB) to MR, define OγA,γB := {O(v, x) : v ∈ V (G) ∧ (γA(v) =
x∨γB(v) = x)} as the corresponding set of options. Let γ∗A and γ∗B be the optimal solutions to MR
which is of cost OPTMR.
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We now argue that Oγ∗A,γ∗B is a feasible solution to MOMI(MR) of cost OPTMR, demonstrating
that the optimal solution to MOMI(MR) has cost at most OPTMR. To see this notice that by
construction the MOMI cost of Oγ∗A,γ∗B is exactly the Min-Rep cost of (γ∗A, γ

∗
B).

We need only argue, then, that Oγ∗A,γ∗B is feasible for MOMI(MR) and do so now. The value of
every state in MOMI(MR) is 1. Thus, we must guarantee that after 3 iterations of value iteration,
every state has value 1. However, without any options every state except each Se has value 1 after
3 iterations of value iteration. Thus, it suffices to argue that Oγ∗A,γ∗B guarantees that every Se will
have value 1 after 3 iterations of value iteration. Since (γ∗A, γ

∗
B) is a feasible solution to MR we

know that for every e = (Ai, Bj) there exists an ā ∈ γ∗A(Ai) and b̄ ∈ γ∗B(Bj) such that (ā, b̄) ∈ πe;
correspondingly there are options O(Ai, ā), O(Bj , b̄) ∈ Oγ∗A,γ∗B . It follows that, given options
Oγ∗A,γ∗B from, Se one can take option O(Ai, ā) then the action from Seā to Seb̄ and then option
O(Bj , b̄) to arrive in Sg; thus, after 3 iterations of value iteration the value of Se is 1. Thus, we
conclude that after 3 iterations of value iteration every state has converged on its value.

We now show that a solution to MOMI(MR) corresponds to a solution to MR. For the remainder
of this section γOA (Ai) := {a : O(Ai, a) ∈ O} and γOB (Bj) := {b : O(Bj , b) ∈ O} is the Min-Rep
solution corresponding to option set O.

Lemma 3. For a feasible solution to MOMI(MR), O, we have (γOA , γ
O
B ) is a feasible solution to

MR of cost |O|.

Proof. Notice that by construction the Min-Rep cost of (γOA , γ
O
B ) is exactly |O|. Thus, we need only

prove that (γOA , γ
O
B ) is a feasible solution for MR.

We do so now. Consider an arbitrary edge e = (Ai, Bj) ∈ E; we wish to show that (γOA , γ
O
B )

satisfies e. Since O is a feasible solution to MOMI(MR) we know that after 3 iterations of value
iteration every state must converge on its value. Moreover, notice that the value of every state in
MOMI(MR) is 1. Thus, it must be the case that for every Se there exists a path of length 3 from
Se to Sg using either options or actions. The only such paths are those that take an option O(Ai, a),
then an action from Sea to Seb then option O(Bj , b) where (a, b) ∈ πe. It follows that a ∈ γOA (Ai)
and b ∈ γOB (Bj). But since (a, b) ∈ πe, we then know that e is satisfied. Thus, every edge is satisfied
and so (γOA , γ

O
B ) is a feasible solution to MR.

Theorem 4.2 Proof. Assume NP 6⊆ DTIME(npoly logn) and for the sake of contradiction that there
exists an ε > 0 for which polynomial-time algorithm AMOMI can 2log1−ε n-approximate MOMI.
We use AMOMI to 2log1−ε′ ñ approximate Min-Rep for a fixed constant ε′ > 0 in polynomial-time,
thereby contradicting Lemma 1. Again, ñ is the number of vertices in the graph of the Min-Rep
instance.

We begin by noting that the relevant quantities in MOMI(MR) are polynomially-bounded. Notice
that the number of states n in the MDP in MOMI(MR) is at most O(ñ2|ΣA||ΣB |) = ñc for some
fixed constant c by the aforementioned assumption that ΣA and ΣB are polynomially-bounded in
ñ.3

Our polynomial-time approximation algorithm to approximate instance MR of Min-Rep is as fol-
lows: Run AMOMI on MOMI(MR) to get back option set O. Return (γOA , γ

O
B ) as defined above

as our solution to MR.

We first argue that our algorithm is polynomial-time in ñ. However, notice that for each vertex, we
create a polynomial number of states. Thus, the number of states in MOMI(MR) is polynomially-
bounded in ñ and soAMOMI runs in time polynomial in ñ. A polynomial runtime of our algorithm
immediately follows.

We now argue that our algorithm is a 2log1−ε′ ñ-approximation for Min-Rep for some ε′ > 0. Ap-
plying Lemma 3, the approximation of AMOMI and then Lemma 2, we have that (γOA , γ

O
B ) is a

3It is also worth noticing that since we create at most O(ñ|ΣA| + ñ|ΣB |) options, the total number of
options in O′ is at most polynomial in ñ.
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feasible solution for MR with cost

costMin-Rep(γOA , γ
O
B ) = |O|

≤ 2log1−ε nOPTMOMI

≤ 2log1−ε nOPTMR

Thus, (γOA , γ
O
B ) is a 2log1−ε n approximation for the optimal Min-Rep solution where n is the number

of states in the MDP ofMOMI(MR). Now recalling that n ≤ ñc for fixed constant c. We therefore
have that (γOA , γ

O
B ) is a 2log1−ε ñc = 2c

1−ε log1−ε ñ ≤ c′ · 2log1−ε ñ approximation for a constant c′.

Choosing ε sufficiently small, we have that c′ · 2log1−ε ñ ≤ 2log1−ε′ ñ for sufficiently large ñ.

Thus, our polynomial-time algorithm is a 2log1−ε′ ñ-approximation for Min-Rep for ε′ > 0, thereby
contradicting Lemma 1. We conclude that MOMI cannot be 2log1−ε n-approximated.

Theorem 2. A-MOMI has the following properties:

1. A-MOMI runs in polynomial time.

2. It guarantees that the MDP is solved within ` iterations using the option set acquired by
A-MOMI O.

3. If the MDP is deterministic, the option set is at mostO(log n) times larger than the smallest
option set possible to solve the MDP within ` iterations.

Theorem 2.1. A-MOMI runs in polynomial time.

Proof. Each step of the procedure runs in polynomial time.

(1) Solving an MDP takes polynomial time Littman et al. (1995). To compute d we need to solve
MDPs at most |S| times. Thus, it runs in polynomial time.

(4) We solve the set cover using a polynomial time approximation algorithm Hochbaum (1982)
which runs in O(|S|3), thus run in polynomial time.

(2), (3), and (5) Immediate.

Theorem 2.2. A-MOMI guarantees that the MDP is solved within ` iterations using the option set
O.

Proof. A state s ∈ X+
g reaches optimal within ` steps by definition. For every state s ∈ S \ X+

g ,
the set cover guarantees that we have Xs′ ∈ C such that d(s, s′) < `. As we generate an option
from s′ to g, s′ reaches to optimal value with 1 step. Thus, s reaches to ε-optimal value within
d(s, s′) + 1 ≤ `. Therefore, every state reaches ε-optimal value within ` steps.

Theorem 2.3. If the MDP is deterministic, the option set is at most O(log n) times larger than the
smallest option set possible to solve the MDP within ` iterations.

Proof. Using a suboptimal algorithm by Chvatal 1979 we get C such that |C| ≤ O(log n)|C∗|. Thus,
|O| = |C| ≤ O(log n)|C∗| = O(log n)|O∗|.

1.3 A-MIMO

The approximation algorithm for MIMO (A-MIMO) is as follows.

1. Compute an asymmetric distance function dε(s, s′) : S × S → N representing the number
of iterations for a state s to reach its ε-optimal value if we add a point option from a state
s′ to a goal state g.

2. Using this distance function, solve an asymmetric k-center problem, which finds a set of
center states that minimizes the maximum number of iterations for every state to converge.
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3. Generate point options with initiation states set to the center states in the solution of the
asymmetric k-center, and termination states set to the goal.

Theorem 2.4. A-MIMO runs in polynomial time.

Proof. Each step of the procedure runs in polynomial time.

(1) Solving an MDP takes polynomial time. To compute dwe need to solve MDPs at most |S| times.
Thus, it runs in polynomial time.

(2) The approximation algorithm we deploy for solving the asymmetric-k center which runs in poly-
nomial time Archer (2001). Because the procedure by Archer 2001 terminates immediately after
finding a set of options which guarantees the suboptimality bounds, it tends to find a set of options
smaller than k. In order to use the rest of the options effectively within polynomial time, we use a
procedure Expand to greedily add a few options at once until it finds all k options. We enumerate
all possible set of options of size r = dlog ke (if |O| + log k > k then we set r = k − |O|) and
add a set of options which minimizes ` (breaking ties randomly) to the option set O. We repeat this
procedure until |O| = k. This procedure runs in polynomial time. The number of possible option
set of size r is rCn = O(nr) = O(k). We repeat this procedure at most dk/ log ke times, thus the
total computation time is bounded by O(k2/ log k).

(3) Immediate.

Therefore, A-MIMO runs in polynomial time.

Before we show that it is sufficient to consider a set of options with its terminal state set to the goal
state of the MDP.

Lemma 4. There exists an optimal option set for MIMO and MOMI with all terminal state set to
the goal state.

Proof. Assume there exists an option with terminal state set to a state other than the goal state in
the optimal option set O. By triangle inequality, swapping the terminal state to the goal state will
monotonically decrease d(s, g) for every state. By swapping every such option we can construct an
option set O′ with L(O′) ≤ L(O).

Lemma imply that discovering the best option set among option sets with their terminal state fixed
to the goal state is sufficient to find the best option set in general. Therefore, our algorithms seek to
discover options with termination state fixed to the goal state.

Using the option set acquired, the number of iterations to solve the MDP is bounded by P (C). To
prove this we first generalize the definition of the distance function to take a state and a set of states
as arguments dε : S × 2S → N. Let dε(s, C) the number of iterations for s to converge ε-optimal if
every state s′ ∈ C has converged to ε-optimal: dε(s, C) := min(d′ε(s), 1 + d′ε(s, C))− 1. As adding
an option will never make the number of iterations larger,

Lemma 5.
d(s, C) ≤ min

s′∈C
d(s, s′). (1)

Using this, we show the following proposition.

Theorem 2.5. The number of iterations to solve the MDP using the acquired options is upper
bounded by P (C).

Proof. P (C) = maxs∈S minc∈C d(s, c) ≥ maxs∈S d(s, C) = L(O) (using Equation 2). Thus P (C)
is an upper bound for L(O).

The reason why P (C) does not always give us the exact number of iterations is because adding two
options starting from s1, s2 may make the convergence of s0 faster than d(s0, s1) or d(s0, s2). Ex-
ample: Figure 5 is an example of such an MDP. From s0 it may transit to s1 and s2 with probability
0.5 each. Without any options, the value function converges to exactly optimal value for every state
with 3 steps. Adding an option either from s1 or s2 to g does not shorten the iteration for s0 to
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s0

s1 s2

s3

g

Figure 4: An example of an MDP where d(s, C) < mins′∈C d(s, s′). Here the transition induced
by the optimal policy is stochastic, thus from s0 one may go to s1 and s2 by probability 0.5 each.
Either adding an option from s1 or s2 to g does not make the convergence faster, but adding both
makes it faster.

converge. However, if we add two options from s1 and s2 to g, s0 converges within 2 steps, thus the
MDP is solved with 2 steps.

The equality of the statement 2 holds if the MDP is deterministic. That is, d(s, C) = mins′∈C d(s, s′)
for deterministic MDP.

Theorem 2.6. If the MDP is deterministic, it has a bounded suboptimality of log∗ k.

Proof. First we show P (C∗) = L(O∗) for deterministic MDP. From d(s, C) = mins′∈C d(s, s′),
P (C∗) = maxs∈S minc∈C∗ d(s, c) = maxs∈S d(s, C∗) = L(O∗).

The asymmetric k-center solver guarantees that the output C satisfies P (C) ≤ c(log∗ k +
O(1))P (C∗) where n is the number of nodes Archer (2001). Let MIMO(M, ε, k) be an instance
of MIMO. We convert this instance to an instance of asymmetric k-center AsymKCenter(U , d, k),
where |U| = |S|. By solving the asymmetric k-center with the approximation algorithm, we
get a solution C which satisfies P (C) ≤ c(log∗ k + O(1))P (C∗). Thus, the output of the algo-
rithm O satisfies L(O) = P (C) ≤ c(log∗ k + O(1))P (C∗) = c(log∗ k + O(1))L(O∗). Thus,
L(O) ≤ c(log∗ k +O(1))L(O∗) is derived.

Before we show that it is sufficient to consider a set of options with its terminal state set to the goal
state of the MDP.

Lemma 6. There exists an optimal option set for MIMO and MOMI with all terminal state set to
the goal state.

Proof. Assume there exists an option with terminal state set to a state other than the goal state in
the optimal option set O. By triangle inequality, swapping the terminal state to the goal state will
monotonically decrease d(s, g) for every state. By swapping every such option we can construct an
option set O′ with L(O′) ≤ L(O).

Lemma imply that discovering the best option set among option sets with their terminal state fixed
to the goal state is sufficient to find the best option set in general. Therefore, our algorithms seek to
discover options with termination state fixed to the goal state.

Using the option set acquired, the number of iterations to solve the MDP is bounded by P (C). To
prove this we first generalize the definition of the distance function to take a state and a set of states
as arguments dε : S × 2S → N. Let dε(s, C) the number of iterations for s to converge ε-optimal if
every state s′ ∈ C has converged to ε-optimal: dε(s, C) := min(d′ε(s), 1 + d′ε(s, C))− 1. As adding
an option will never make the number of iterations larger,

Lemma 7.
d(s, C) ≤ min

s′∈C
d(s, s′). (2)

Using this, we show the following proposition.
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s0
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s3
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Figure 5: An example of an MDP where d(s, C) < mins′∈C d(s, s′). Here the transition induced
by the optimal policy is stochastic, thus from s0 one may go to s1 and s2 by probability 0.5 each.
Either adding an option from s1 or s2 to g does not make the convergence faster, but adding both
makes it faster.

Theorem 2.7. The number of iterations to solve the MDP using the acquired options is upper
bounded by P (C).

Proof. P (C) = maxs∈S minc∈C d(s, c) ≥ maxs∈S d(s, C) = L(O) (using Equation 2). Thus P (C)
is an upper bound for L(O).

The reason why P (C) does not always give us the exact number of iterations is because adding two
options starting from s1, s2 may make the convergence of s0 faster than d(s0, s1) or d(s0, s2). Ex-
ample: Figure 5 is an example of such an MDP. From s0 it may transit to s1 and s2 with probability
0.5 each. Without any options, the value function converges to exactly optimal value for every state
with 3 steps. Adding an option either from s1 or s2 to g does not shorten the iteration for s0 to
converge. However, if we add two options from s1 and s2 to g, s0 converges within 2 steps, thus the
MDP is solved with 2 steps.

The equality of the statement 2 holds if the MDP is deterministic. That is, d(s, C) = mins′∈C d(s, s′)
for deterministic MDP.

Theorem 2.8. If the MDP is deterministic, it has a bounded suboptimality of log∗ k.

Proof. First we show P (C∗) = L(O∗) for deterministic MDP. From d(s, C) = mins′∈C d(s, s′),
P (C∗) = maxs∈S minc∈C∗ d(s, c) = maxs∈S d(s, C∗) = L(O∗).

The asymmetric k-center solver guarantees that the output C satisfies P (C) ≤ c(log∗ k +
O(1))P (C∗) where n is the number of nodes Archer (2001). Let MIMO(M, ε, k) be an instance
of MIMO. We convert this instance to an instance of asymmetric k-center AsymKCenter(U , d, k),
where |U| = |S|. By solving the asymmetric k-center with the approximation algorithm, we
get a solution C which satisfies P (C) ≤ c(log∗ k + O(1))P (C∗). Thus, the output of the algo-
rithm O satisfies L(O) = P (C) ≤ c(log∗ k + O(1))P (C∗) = c(log∗ k + O(1))L(O∗). Thus,
L(O) ≤ c(log∗ k +O(1))L(O∗) is derived.

2 FINDING OPTIONS THAT MINIMIZE LEARNING TIME FOR
HARD-EXPLORATION TASKS

Theorem 3. Assume a stochastic shortest path problem to reach a goal g where a non-positive
reward rc ≤ 0 is given for non-goal states and γ = 1. Let P be a random walk transition matrix:
P (s, s′) =

∑
a∈A π(s)T (s, a, s′):

∀g : V πg (s) ≥ rcE[C(G)],

where C(G) = maxs∈S Cs(G) and Cs(G) is a cover time of a transition matrix P starting from
state s.
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Proof. The value of state s is rc times the expected number of steps to reach the goal state. Thus,

V πg (s) = rcE[Hsg]

≥ rcE[max
s′∈S

Hss′ ]

= rcE[Cs(G)]

≥ rcE[C(G)]

Theorem 4. Assume that a random walk induced by a policy π is a uniform random walk. Adding
two options by the algorithm improves the upper bound of the cover time if the multiplicity of the
second smallest eigenvalue is one:

E[C(G′)] ≤ n2 lnn

λ2(L) + F
(1 + o(1)), (3)

where E[C(G′)] is the expected cover time of the augmented graph, F =
(vi−vj)2

6/(λ3−λ2+3/2 , and vi, vj
are the maximum and minimum values of the Fiedler vector. If the multiplicity of the second smallest
eigenvalue is more than one, then adding any single option cannot improve the algebraic connectiv-
ity.

Proof. Assume the multiplicity of the second smallest eigenvalue is one. Let L′ be the graph Lapla-
cian of the graph with an edge inserted to L using the algorithm by Ghosh & Boyd 2006. By adding
a single edge, the algebraic connectivity is guaranteed to increase at least by F :

λ2 ≥ λ2 +
(vi − vj)2

6/(λ3 − λ2) + 3/2
, (4)

and the upper bound of the cover time is guaranteed to decrease:

E[C(G′)] ≤ n2 lnn

λ2
(1 + o(1))

≤ n2 lnn

λ2 +
(vi−vj)2

6/(λ3−λ2)+3/2

(1 + o(1)).

As (vi−vj)2
6/(λ3−λ2)+3/2 is positive,

n2 lnn

λ2 +
(vi−vj)2

6/(λ3−λ2)+3/2

(1 + o(1)) <
n2 lnn

λ2
(1 + o(1)), (5)

thus the upper bound is guaranteed to decrease.

Assume the second smallest eigenvalue is more than one. Then, λ2(L) = λ3(L). From eigenvalue
interlacing Haemers (1995), for any edge insertion, λ2(L) ≤ λ2(L′) ≤ λ3(L). Thus, λ2(L′) =
λ2(L).

REFERENCES

Aaron Archer. Two O(log* k)-approximation algorithms for the asymmetric k-center problem. In
International Conference on Integer Programming and Combinatorial Optimization, pp. 1–14.
Springer, 2001.

Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations research,
4(3):233–235, 1979.

Arpita Ghosh and Stephen Boyd. Growing well-connected graphs. In Proceedings of the 45th IEEE
Conference on Decision and Control, pp. 6605–6611. IEEE, 2006.

Willem H Haemers. Interlacing eigenvalues and graphs. Linear Algebra and its applications, 226:
593–616, 1995.

10



Published in the proceedings of the Workshop on “Structure & Priors in Reinforcement Learning”
at ICLR 2019

Dorit S Hochbaum. Approximation algorithms for the set covering and vertex cover problems. SIAM
Journal on computing, 11(3):555–556, 1982.

Guy Kortsarz. On the hardness of approximating spanners. Algorithmica, 30(3):432–450, 2001.

Michael L Littman, Thomas L Dean, and Leslie Pack Kaelbling. On the complexity of solving
Markov decision problems. In Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, pp. 394–402. Morgan Kaufmann Publishers Inc., 1995.

11


	Finding Options that Minimize Planning Time
	Hardness of Approximation of MOMI with Deterministic MDP
	Hardness of Approximation of MOMI
	A-MIMO

	Finding Options that Minimize Learning Time for Hard-Exploration Tasks

