
Appendix

A Overview
This supplementary document provides additional technical details, hyperparameteres used in implementations and experiments
and more quantitative results to the main paper.

In Section B, some essential notations and preliminaries will be presented, then in Section C, we will provide detailed
derivations to the approximate solving of our policy optimization problem with mimicry constraints. Specifically, the solving of
duality and a closed-form solution will be demonstrated. Then in Section D, the hyperparameters used in the implementations
of all the baselines and MCPO will be presented, while some specifications to the tested environments and tasks will also be
illustrated. Finally in Section E, some numerical results in the comparative and ablation experiments will be listed, and some
analysis on the mimicry constraint value under different experiment settings will be provided.

B Preliminaries
This section reviews some fundamental conceptions presented in our method. Before further introduction, we first provide the
key notations used in this paper.
Notations. For modeling the action decision process in our context, a standard Markov decision process (MDP) [Sutton and
Barto, 1998] (S,A, r, T , µ, γ) is considered, where S and A denotes the space of feasible states and actions respectively,
r(s, a) → R is the reward function, T (s′|s, a) and µ(s) represent the transition probability and initial state distribution and
γ ∈ (0, 1) is the discount factor. A stochastic policy π(a|s) : S ×A → [0, 1] maps state into action distribution. A trajectory ζ
is given by the sequence of state-action pairs {(s0, a0), (s1, a1), ...}.

B.1 Local Policy Search for Reinforcement Learning
Local policy search [Kakade, 2002] is a category of RL methods that iteratively update a θ-parameterized policy πθ by maxi-
mizing the expected advantage over a local neighborhood of the most recent iterate πθk

θk+1 = argmax
θ

Eπθk
[
Aπθk (s, a)

]
s.t. DKL

(
πθk‖πθk+1

)
≤ δ,

(1)

where δ determines the step size per update, Aπ is advantage action value and Aπ(s, a) = Qπ(s, a) − Vπ(s). Vπ and Qπ are
state and state-action value functions in RL.

Recent popular RL approaches including TRPO [Schulman et al., 2015] and PPO [Schulman et al., 2017] are both built
upon this paradigm. In this paper, we also consider the optimization problem in (1) and develop our Mimicry Constraint Policy
Optimization (MCPO) algorithm based on it.

B.2 Occupancy Measure
Occupancy measure [Puterman, 1994; Syed et al., 2008] defined below characterizes the distribution of the state-action pairs
within the exploration trajectories when policy π is executed, which will be useful in the following analysis.

Definition 1 (Occupancy Measure). Given a stationary policy π, let ρπ(s) : S → R and ρπ(s, a) : S × A → R denote the
density of the state distribution and the joint distribution for state and action under the policy π, namely,

ρπ(s) ,
∞∑
t=0

γtP (st = s|π)

ρπ(s, a) , ρπ(s)π(a|s).
(2)

Then we name ρπ(s, a) as occupancy measure of policy π.

B.3 Maximum Mean Discrepancy
Maximum Mean Discrepancy (MMD) [Borgwardt et al., 2006; Sriperumbudur et al., 2008; Gretton et al., 2012] is a non-
parametric relevant criterion of the discrepancy between distributions. Formally, let X ,H to be a feature space and an universal
Reproducing Kernel Hilbert Space (RKHS) [Steinwart, 2001] respectively, and φ(x) : X → H. For two distributions p and q,
MMD is an instance of the integral probability metric [Müller, 1997] defined as

MMD[H, p, q] ,
∥∥∥∥∫
X
φ(x)dp(x)−

∫
X
φ(y)dq(y)

∥∥∥∥
H

. (3)



Given two set of samples X = {xi}Mi=1 and Y = {yj}Nj=1 from p and q respectively, an empirical estimation of MMD is
obtained by

MMD2[H, X, Y ] =

∥∥∥∥∥ 1

M

M∑
i=1

φ(xi)−
1

N

N∑
i=1

φ(yi)

∥∥∥∥∥
2

=
1

M2

M∑
i=1

M∑
i′=1

k(xi, xi′) +
1

N2

N∑
j=1

N∑
j′=1

k(yj , yj′)

− 2

MN

M∑
i=1

N∑
j=1

k(xi, yj), (4)

where k(·, x) is the corresponding reproducing kernel of feature map φ(x). Therefore, the discrepancy between two distributions
can be estimated by computing the distance between the means of their samples mapped into a RKHS. Compared to other
parametric distance metric like Kullback-Leiber (KL) divergence, MMD can avoid the bias introduced by density estimation
when only samples are available.

C Solving the Optimization Problem with Mimicry Constraint
In general, considering the approximated optimization problem in our main paper, it can be seen as a constrained optimization
problem with linear and quadratic constraints as shown below

p∗ = min
x

gTx

s.t. bTx ≤ c
1

2
xTHx ≤ δ,

(5)

where x = (θ − θk). Due to the positive definiteness of the Hussein matrix H , this optimization problem would be convex.
According to Slater’s condition, once there exists a strictly feasible solution x, the strong duality holds and the primer problem
can be solved by solving its dual problem

p∗ = min
x

max
λ≥0
ν≥0

gTx+ λ(
1

2
xTHx− δ) + ν(bTx− c) (6)

= max
λ≥0
ν≥0

min
x

(g + νb)Tx+ λ(
1

2
xTHx)− νc− λδ (7)

⇒ x∗ = − 1

λ∗
H−1(g + ν∗b) (8)

p∗ = max
λ≥0
ν≥0

− 1

2λ
(gTH−1g + 2νbTH−1g + ν2bTH−1b)− νc− λδ (9)

⇒ ν∗ = max

{
−λ
∗c+ bTH−1g

bTH−1b
, 0

}
(10)

⇒ λ∗ =


max

{√
gTH−1g

2δ , 0

}
ν∗ = 0,

max
{√

gTH−1g−(bTH−1g)/(bTH−1b)
2δ−(c2)/(bTH−1b)

, 0
}

ν∗ > 0
. (11)

We use the strong duality here from Eqn. (6) to Eqn. (7), then the optimal x∗ could be obtained by calculating its stationary
point on Lagrange function as Eqn. (8). Substituting x∗ and then we can get Eqn. (9), the optimal ν∗, λ∗ could be obtained by
discussion on the value of ν∗. Once ν∗ and λ∗ is determined, we can obtain the approximated optimal θk+1

θk+1 = θk −
1

λ∗
H−1(g + ν∗b). (12)

When the original problem is infeasible, the update direction cannot be directly obtained from the original constrained
optimization problem. Instead, we optimize an MMD-IL sub-problem (13) as a recovery mechanism, which aims to decrease
the constraint function value as much as possible.

θ∗ = argmin
θ

MMD[H, ρπθ , ρE ]. (13)



Once there exists one feasible point, we can go back to solve original optimization problem.
For determining whether the problem is feasible or not, we calculate the nearest point on the constraint plain

min
x

1

2
xTHx

s.t. bTx = c,
(14)

whose optimal solution can be obtained by Lagrange method as x∗ = cH−1b
bTH−1b

. Thus if the approximated KL discrepancy
x∗THx∗ = c2

bTH−1b
≤ 2δ , there could be feasible solution, otherwise, if c2

bTH−1b
> 2δ and at current θk the problem is feasible,

the linear constraint would be satisfied wherever the quadratic constraint is satisfied; otherwise the problem is infeasible and
recovery target Eqn. (13) should be used instead.

Figure 1 illustrates how our proposed method improves the original policy optimization with the mimicry constraint defined
by the expert demonstrations. The mimicry constraint indicates an area with high return that can be used as an exploration
reference. By integrating it into the policy optimization procedure, we can prevent the update direction from pointing to sub-
optimal area, which encourages a better on-policy exploration efficiency.

Figure 1: An overview to our proposed Mimicry Constraint Policy Optimization (MCPO) algorithm.



D Hyperparameters
Table 1 lists the parameters for Pre-training [Silver et al., 2016], POfD [Kang et al., 2018], PPO [Schulman et al., 2017], MMD-
IL and proposed MCPO used in the comparative evaluation. Table 2 lists the specifications about the benchmark environments,
the number of trajectories in demonstrations and mimicry constraint tolerances for each environment.

Table 1: Hyperparameters for Evaluated Algorithms

Parameter Value

Shared
Optimizer Adam [Kingma and Ba, 2015]
Learning rate 1e−4

GAE 0.95
L2 penalty 1e−3

Discount (γ) 0.99
Architecture of policy, value and discriminator networks (300, 400)
Nonlinearity Tanh
Batch size 64 (MountainCar), 1024 (others)

Pre-training
Pre-training epoches 50

POfD
Weight for GAN term 0.1 (0.01 for HalfCheetah and Walker2d)
Weight for entropy term 0.0

PPO
Weight of clipping epsilon 0.2

MMD-IL
N/A N/A

MCPO (Ours)
KL tolerance δ 5e−3

Damping 1e−2

Table 2: Hyperparameters for Evaluated Environments

Environment S A Max-Step Demonstrations Size Tolerance d Annealing factor ε

MountainCar-v0 R4 {0, 1} 200 1 traj 10−3 5× 10−3

Pendulum-v2 R4 R1 1000 1 traj 10−3 10−2

DoublePendulum-v2 R11 R1 1000 1 traj 10−3 5× 10−2

HalfCheetah-v2 R17 R6 1000 1 traj 10−3 10−3

Hopper-v2 R11 R3 1000 1 traj 10−4 10−3

Walker2d-v2 R17 R6 1000 1 traj 10−2 10−3

Ant-v2 R111 R8 1000 1 traj 10−5 10−3

E Empirical Results
We evaluate MCPO against several baselines on seven physics-based control benchmarks [Duan et al., 2016], ranging from low-
dimensional classic control to challenging high-dimensional continuous robotic control tasks. All experiments are evaluated
using the exact reward functions, defined by OpenAI Gym [Brockman et al., 2016]. We aim to first investigate the effectiveness
of our method compared with other counterparts and then performing an ablations study on determining the impact on the
mimicry constraint of our method.



Table 3: Comparison results. All results are measured in the original exact reward.

Environment Sparsification Demo Pre-training POfD MCPO (Ours)

MountainCar-v0 SPARSE1 81.25 82.73±6.91 49.24±39.70 83.55±2.56
Pendulum-v2 SPARSE3 553.00 950.28±164.89 1000.00±00.00 1000.00±00.00

DoublePendulum-v2 SPARSE3 1488.28 8605.39±984.68 4191.07±2778.00 9190.54±432.88
HalfCheetah-v2 SPARSE2 2109.80 2696.95±334.77 3508.84±259.71 3541.23±135.72

Hopper-v2 SPARSE2 969.71 637.96±120.09 32.71±12.75 1897.69±903.92
Walker2d-v2 SPARSE2 1843.75 2552.48±567.80 -6.83±6.32 3533.36±501.68

Ant-v2 SPARSE2 1942.05 -5477.28±2441.13 -70.04±28.37 2602.55±230.17
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Figure 2: Learning curves of our method versus baselines under challenging robotic control benchmark. For each experiment, a step repre-
sents one interaction with the environment.

E.1 Settings
To simulate the sparse reward conditions using existing control tasks in Gym, we first propose several reward sparsification
methods with details as follows:

• SPARSE1: Only provide reward +1 when the agent reaches a specific terminal state, otherwise no reward will be provided.

• SPARSE2: A reward of +1 will be provided when the agent has already moved towards a certain direction for some
distance.

• SPARSE3: When the last pole is higher than a given height, a reward of +1 will be provided. This is only for the Pendulum
and DoublePendulum tasks.

For the demonstrations, we train expert policies for each tested tasks with PPO [Schulman et al., 2017] based on the exact re-
ward (shown as Expert), and select a meanwhile learned policy, record only a single trajectory as the imperfect demonstrations
(shown as Demo). Finally, the baselines we carry out include:
Pre-training [Silver et al., 2016]: This method first performs policy pre-training with provided demonstrations. We use be-
havior cloning [Schaal, 1997] as the pre-training strategy for 50 iterations with one imperfect trajectory demonstrations. Then
PPO [Schulman et al., 2017] with sparse reward is adopted for the rest of policy learning.
POfD [Kang et al., 2018]: In POfD, the training of GAN is paralleled with the policy optimization, which is different from the
pre-training baseline. We adopt the same neural structure to the discriminator as the original POfD. As the action space of all
the considered tasks is continuous, POfD with discrete policy does not present in our implementation.
PPO & MMD Imitation (MMD-IL): Although PPO and MMD Imitation does not belong to the solutions to RLfD, here we
still implement them to verify the sparsification of reward and the quality of demonstrations. Specifically, the PPO baseline
will run with sparse reward, while MMD Imitation is directly optimizing MMD between agent exploration rollouts and expert
demonstrations with the imperfect demonstrations.

For a fair comparison, the policies of all the methods and tasks are parameterized by the same neural network architecture
with two hidden layers (300 and 400 units each) and Tanh activation functions. For the sake of efficiency, all the algorithms are
evaluated within the fixed amount of environment steps for each task. Due to the space limitation, we defer more experimental
details to the supplementary material.



(a) (b)

Figure 3: Learning curves over 5 trails on HalfCheetah task. (a): ablation study about the different tolerance factor d, (b): sensitivity of
choosing fixed or annealing strategy of tolerance.

E.2 Comparative Experiment
In comparative evaluations, we conduct challenging control tasks ranging from low state and action dimension (MountainCar)
to complex ones (Pendulum, DoublePendulum, HalfCheetah, Hopper and Walker2d) with one single imperfect demonstrations
(see the Demo curve). The corresponding learning curve are demonstrated in Figure 2, while the averaged cumulative rewards
are recorded in Table 3. For each single task, we run each algorithm over five times with different random seeds and the
solid curves in Figure 2 correspond to the mean reward and the shaded region represents the variance over the five trials. The
numerical results in Table 3 are averaged with 50 trials under the best policy over the five times obtained at the end of training.

The results overall read that our method achieves comparable performances with the baselines on relatively simple tasks (such
as MountainCar) and outperforms them on difficult tasks. In particular, during policy optimization, our method can converge
faster than other RLfD counterparts as well as obtains better final performances. And by comparing with the strong baseline
of pre-training, we can see that although convergence efficiency of proposed MCPO during the early phase of training may
not have significant advantages, but as it continues, the performance of MCPO can be improved persistently like DoublePen-
dulum(+585.15) and HalfCheetah(+844.28), while pre-training struggles on achieving higher return, which demonstrates that
MCPO could benefit more from the exploration guidance by mimicry constraint during the whole policy optimization procedure
than by only imitating at the beginning.

On the other hand, we also find that our algorithm exhibits a more stable and robust behavior. By comparing with POfD,
since MCPO does not rely on either complex training strategies or auxiliary model, it can be more stable to different tasks and
environment specifications. Moreover, leveraging the demonstrations as a mimicry constraint can also help for a more robust
optimization procedure than the penalty mechanism in POfD, especially in difficult Hopper(+1864.98), Walker2d(+3540.19)
and Ant(+2672.59) tasks.

From the results of PPO and MMD-Imitation, the experiment settings of reward sparsification and imperfect demonstrations
can be verified. As it illustrates, under sparse environmental feedback, pure PPO is failed to find an optimal policy on most of
the tested tasks, which also indicates the importance of exploration. Furthermore, with few imperfect demonstrations, MMD-
Imitation also cannot learn a satisfying policy; thus imitation only accounts for a small part of the advantages of MCPO, and
the exploration improvement via mimicry constraint is the major one.

E.3 Ablation Experiment
The results presented in the previous section suggest that our proposed method can outperform other RLfD approaches on
several challenging tasks. Now we will further investigate the impact of the core mimicry constraint in our method. More
specifically, we are interested in the tolerance factor of d. We will compare the performance of MCPO with different fixed d,
and analyze the sensibility of choice different tolerance strategy (fixed or annealing).

Different tolerance. We design four groups of parameters for the ablation experiments on the tolerance choosing
in HalfCheetah-v2 task, where the annealing mechanism is disabled by setting ε fixed at zero, and choose d from
{100, 10−1, 10−3, 10−6}. The learning curves are plotted in Figure 3(a). As the results demonstrate, when given relatively
large tolerance, the exploration reference from demonstrations will not work as the constraint almost does not affect policy op-
timization. In contrast, a too small tolerance will hurt the final performance when the demonstrations are imperfect. Therefore,
hand-crafting the tolerance for mimicry constraint can be difficult, and an automatic adjustment with the annealing mechanism
should be adopted.

Fixed vs. Annealing tolerance. In the previous experiment, we mention the importance of annealing of tolerance. Now we
explore the advantages of annealing mechanism quantitatively In HalfCheetah-v2 task, we choose a fixed d = 10−3 and select
the annealing factor ε from {0, 2×10−3, 10−3, 10−6}. Corresponding learning curves are shown in Figure 3(b). We can see that
the performances of MCPO with an annealing tolerance are overall better than with a fixed one (simply by setting ε as zero).
Moreover, when the annealing factor ε is set properly, the performance of MCPO is not sensitive to the minor changes of ε as
the results of different factors are almost at the same level. This further demonstrates the robustness of our proposed method.



E.4 Additional Results for Comparative and Ablation Experiments
Here we provide additional results of expert (ideal), random policy, PPO [Schulman et al., 2017] and MMD-IL on the bench-
mark environments in Table 4. Table 5 lists the numerical results of ablation experiments on HalfCheetah-v2 task. All results
are tested with 50 runs under the best policy over the five times.

Table 4: Additional comparison results on expert, random policy, PPO and MMD-IL

Environment Expert Random PPO MMD-IL

MountainCar-v0 90.49±9.87 -30.50±9.61 -0.74±0.40 82.99±4.57
Pendulum-v2 1000.00±0.00 5.61±3.28 727.96±360.14 25.71±1.03

DoublePendulum-v2 9314.57±0.41 54.61±16.84 456.97±111.45 218.43±13.72
HalfCheetah-v2 4234.40±55.13 -274.96±55.86 978.84±665.61 161.74±219.85

Hopper-v2 3362.54±778.92 15.83±11.10 17.09±13.54 118.66±0.38
Walker2d-v2 4543.67±997.34 1.49±5.60 1.54±5.75 8.88±6.07

Ant-v2 3284.22±243.78 -58.46±102.09 -2332.95±2193.85 967.83±0.87

Table 5: Ablation results on HalfCheetah-v2 task.

d = 100, ε = 0 −586.52± 987.00
d = 10−1, ε = 0 −53.96± 712.29
d = 10−3, ε = 0 2947.76± 453.19
d = 10−6, ε = 0 −11.30± 0.82
d = 10−3, ε = 2× 10−3 2943.08± 99.60
d = 10−3, ε = 10−3 3286.78± 376.80
d = 10−3, ε = 10−6 3471.43± 208.78

E.5 Constraint Value in Policy Optimization
Here we provide the value of mimicry constraint during the policy optimization of all the two ablation experiments in Figure 4.
As we can see, MCPO can almost guarantee the satisfactory of constraint during the policy optimization as we use exact dual
solving. Moreover, when the mimicry constraint tolerance d is relatively small, the recovery mechanism will dominate the
optimization procedure at the beginning, and the constraint value will decrease very quickly, as is shown in Figure 4(b).

In the rightmost plot, the purple curve increases at last as the training continues due to the relatively large tolerance annealing
factor ε, which demonstrates the effect of annealing mechanism in MCPO. We can also see that the final performances do not
have a strong correlation to the absolute value of mimicry constraint especially during the late phase of policy optimization, as
the agent has already been well-guided on the exploration.

(a) (b)

Figure 4: Learning curves over 5 trails on HalfCheetah task. (a): the averaged reward in two ablation experiments, (b): the corresponding
mimicry constraint value during the training in two ablation experiments.
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